[1] Yang, Z.H. (2011) Economic Growth, the Dynamic Relationship between Energy Consumption and CO2 Emissions. The Journal of World Economy, 6, 100-125.
[2] Lin, B.Q. and Jiang, Z.J. (2009) The Predict and Influence Factors Analysis of the Kuznets Curve in Chinese Carbon Dioxide Environment. Management World, 4, 27-36.
[3] Shin, M.W., Shin, D., Choi, S.H. and Yoon, E.S. (2008) Optimal Operation of the Boil-Off Gas Compression Process Using a Boil-Off Rate Model for LNG Storage Tanks. Korean Journal of Chemical Engineering, 25, 7-12.
http://dx.doi.org/10.1007/s11814-008-0002-9
[4] Sinha, R.P. and Norsani, W.M. (2012) Investigation of Propulsion System for Large LNG Ships. 1st International Conference on Mechanical Engineering Research 2011 (ICMER2011), Materials Science and Engineering, 36, 1-16.
[5] Seo, M. and Jeong, S. (2010) Analysis of Self-Pressurization Phenomenon of Cryogenic Fluid Storage Tank with Thermal Diffusion Model. Cryogenics, 50, 549-555.
http://dx.doi.org/10.1016/j.cryogenics.2010.02.021
[6] Khemis, O., Boumaza, M., Ait Ali, M. and Francois, M.X. (2003) Experimental Analysis of Heat Transfers in a Cryogenic Tank without Lateral Insulation. Applied Thermal Engineering, 23, 2107-2117.
http://dx.doi.org/10.1016/S1359-4311(03)00164-9
[7] Moon, J.W., Lee, Y.P., Jin, Y.W., Hong, E.S. and Chang, H.M. (2007) Cryogenic Refrigeration Cycle for Re-Lique- faction of LNG Boil-Off Gas. International Cryocooler Conference, Inc., Boulder, 629-635.
[8] Querol, E., Gonzalez-Regueral, B., García-Torrent, J. and Ramos, A. (2011) Available Power Generation Cycles to Be Coupled with the Liquid Natural Gas (LNG) Vaporization Process in a Spanish LNG Terminal. Applied Energy, 88, 2382-2390.
http://dx.doi.org/10.1016/j.apenergy.2011.01.023
[9] Chin, Y.W. (2006) Cycle Analysis on LNG Boil-Off Gas Re-Liquefaction Plant. Journal of the Korea Institute of Applied Superconductivity and Cryogenics, 8, 34-38.
[10] Baek, S., Hwang, G., Lee, C., Jeong, S. and Choi, D. (2011) Novel Design of LNG (Liquefied Natural Gas) Reliquefaction Process. Energy Conversion and Management, 52, 2807-2814.
http://dx.doi.org/10.1016/j.enconman.2011.02.015
[11] Shin, Y. and Lee, Y.P. (2009) Design of a Boil-Off Natural Gas Reliquefaction Control System for LNG Carriers. Applied Energy, 86, 37-44.
http://dx.doi.org/10.1016/j.apenergy.2008.03.019
[12] Pil, C.K., Rausand, M. and Vatn, J. (2008) Reliability Assessment of Reliquefaction Systems on LNG Carriers. Reliability Engineering and System Safety, 93, 1345-1353.
http://dx.doi.org/10.1016/j.ress.2006.11.005
[13] Sayyaadi, H. and Babaelahi, M. (2010) Thermoeconomic Optimization of a Cryogenic Refrigeration Cycle for Re-Lique- faction of the LNG Boil-Off Gas. International Journal of Refrigeration, 33, 1197-1207.
http://dx.doi.org/10.1016/j.ijrefrig.2010.03.008
[14] Sayyaadi, H. and Babaelahi, M. (2011) Multi-Objective Optimization of a Joule Cycle for Re-Liquefaction of the Liquefied Natural Gas. Applied Energy, 88, 3012-3021.
http://dx.doi.org/10.1016/j.apenergy.2011.03.041
[15] Romero, J., Orosa, J.A. and Oliveira, A.C. (2012) Research on the Brayton Cycle Design Conditions for Reliquefaction Cooling of LNG Boil off. Journal of Marine Science and Technology, 17, 532-541.
http://dx.doi.org/10.1007/s00773-012-0180-3
[16] O’Brien, J.E. and Siahpush, A. (1998) Investigation of Low-Cost LNG Vehicle Fuel Tank Concepts. Idaho National Engineering and Environmental Laboratory Final Report, FGFU-98/0015.
[17] Wang, X.H. (2003) The Choice and Analysis of the Technology of Nitrogen Liquification Equipments, Coal Chemical Industry. 8.