MSCE  Vol.3 No.8 , August 2015
Structural and Raman Spectroscopic Study of Antimony Doped Bi0.5Na0.5TiO3 Electroceramic
Pure and Antimony (Sb, x = 0.01%, 0.02% and 0.03%) doped Bi0.5Na0.5TiO3 electro ceramics were successfully synthesized by a conventional solid state reaction route. X-ray diffraction analysis showed that a distinct 002/200 peak splitting appears when doping percentage changes from 0.02 to 0.03, referring to a hexagonal symmetry. The data show the Lorentzian deconvolution of the 002 and 200 peaks of the tetragonal phase and the 202 peak of the rhombohedral phase. There is no significant change in the Raman spectra for the prepared compositions while some additional peaks around 151, 281, 585 and 853 cm-1 compared to the peaks observed in BNT. It may be possible that a morphotrophic phase boundary (MPB) exists around x = 0.03. Analysis of peak positions, widths and intensities of Raman spectroscopy study also confirmed the existence of structural change around x = 0.03 composition.

Cite this paper
Singh, K. , Sao, V. , Tamrakar, P. , Soni, S. , Dubey, V. and Bajpai, P. (2015) Structural and Raman Spectroscopic Study of Antimony Doped Bi0.5Na0.5TiO3 Electroceramic. Journal of Materials Science and Chemical Engineering, 3, 43-49. doi: 10.4236/msce.2015.38007.
[1]   Cross, L.E., Jang, S.J. and Newnham, R.E. (1980) Large Electrostrictive Effects in Relaxor Ferroelectrics. Ferroelectrics, 23, 187-191.

[2]   Nomura, S. and Uchino, K. (1983) Recent Applications of PMN-Based Electrostrictors. Ferroelectrics, 50, 197-202.

[3]   Uchino, K. (2000) Ferroelectric Devices. Marcel Dekker, Inc., New York.

[4]   Smolenski, G.A., Isupov, V.A. and Aganovskaya, A.I. (1961) J. Sov. Phys. Solid State, 2, 2651.

[5]   Rupprecht, G. and Bell, R.O. (1964) Dielectric Constant in Paraelectric Perovskites. Physical Review, 135, A748.

[6]   Suchanicz, J., Poleder, K., Kania, A. and Handerek, J. (1988) Electrostrictive Strain and Pyroeffect in the Region of Phase Coexistence in Na0.5Bi0.5TiO3. Ferroelectrics, 77, 107-110.

[7]   Jones, G.O. and Thomas, P.A. (2002) Investigation of the Structure and Phase Transitions in the Novel A-Site Substituted Distorted Perovskite Compound Na0.5Bi0.5TiO3. Acta Crystallographica Section B, 58, 168-178.

[8]   Suryanarayana, S.V., Raghavender, M., Prasad, G. and Bhimasankara, T. (2007) Material Science and Technology Conference (MS&T).

[9]   Park, S.E. and Hong, K.S. (1997) Variations of Structure and Dielectric Properties on Substituting A-Site Cations for Sr2+ in (Na1/2Bi1/2)TiO3. Journal of Materials Research, 12, 2152-2157.

[10]   Sakata, K. and Masuda, Y. (1974) Ferroelectric and Antiferroelectric Properties of (Na0.5Bi0.5)TiO3-SrTiO3 Solid Solution Ceramics. Ferroelectrics, 7, 347-349.

[11]   Nagata, H. and Takenaka, T. (1997) Lead-Free Piezoelectric Ceramics of (Bi1/2Na1/2)TiO3-1/2(Bi2O3Sc2O3) System. Japanese Journal of Applied Physics, 36, 6055-6057.

[12]   Soukhojak, A.N., Wang, H., Farrey, G.W. and Chiang, Y.-M. (2000) Superlattice in Single Crystal Barium-Doped Sodium Bismuth Titanate. Journal of Physics and Chemistry of Solids, 61, 301-304.

[13]   Sheets, S.A., Soukhojak, A.N., Ohashi, N. and Chiang, Y.-M. (2001) Relaxor Single Crystals in the (Bi1/2Na1/2)1x- BaxZryTi1yO3 System Exhibiting High Electrostrictive Strain. Journal of Applied Physics, 90, 5287.

[14]   Suchanicz, J., Gavshin, M.G., Kudzin, A.Y. and Kus, C. (2001) Dielectric Properties of (Na0.5Bi0.5)1-xMexTiO3 Ceramics near Morphotropic Phase Boundary. Journal of Materials Science, 36, 1981-1985.

[15]   Jaitanong, N., Vittayakorn, W.C. and Chaipanich, A. (2010) Phase Development and Dielectric Responses in PMN- BNT Ceramics. Ceramics International, 36, 1479-1483.

[16]   Yoshii, K., Hiruma, Y., Nagata, H. and Takenaka, T. (2006) Electrical Properties and Depolarization Temperature of (Bi1/2Na1/2)TiO3-(Bi1/2K1/2)TiO3 Lead-Free Piezoelectric Ceramics. Japanese Journal of Applied Physics, 45, 4493- 4496.

[17]   Yang, Z., Hou, Y., Pan, H. and Chang, Y. (2009) Structure, Microstructure and Electrical Properties of (1-x-y)Bi0.5- Na0.5TiO3-xBi0.5K0.5TiO3-yBi0.5Li0.5TiO3 Lead-Free Piezoelectric Ceramics. Journal of Alloys and Compounds, 480, 246-253.

[18]   Li, Y.M., Chen, W., Zhou, J., Xu, Q., Sun, H.J. and Xu, R.X. (2004) Dielectric and Piezoelecrtic Properties of Lead-Free (Na0.5Bi0.5)TiO3-NaNbO3 Ceramics. Materials Science and Engineering: B, 112, 5-9.

[19]   Lin, D., Xiao, D., Zhu, J. and Yu, P. (2006) Piezoelectric and Ferroelectric Properties of Lead-Free [Bi1-y(Na1-x-y- Lix)]0.5BayTiO3 Ceramics. Journal of the European Ceramic Society, 26, 3247-3251.

[20]   Lin, D., Kwok, K.W. and Chan, H.L.W. (2009) Ferroelectric and Piezoelectric Properties of Bi0.5Na0.5TiO3-SrTiO3- Bi0.5Li0.5TiO3 Lead-Free Ceramics. Journal of Alloys and Compounds, 481, 310-315.

[21]   Shieh, J., Wu, K.C. and Chen, C.S. (2007) Switching Characteristics of MPB Compositions of (Bi0.5Na0.5)TiO3-Ba- TiO3-(Bi0.5K0.5)TiO3 Lead-Free Ferroelectric Ceramics. Acta Materialia, 55, 3081-3087.

[22]   Lin, D., Xu, C., Zheng, Q., Wei, Y. and Gao, D. (2009) Piezoelectric and Dielectric Properties of Bi0.5Na0.5TiO3- Bi0.5Li0.5TiO3 Lead-Free Ceramics. Journal of Materials Science: Materials in Electronics, 20, 393-397.

[23]   Xu, C., Lin, D. and Kwok, K.W. (2008) Structure, Electrical Properties and Depolarization Temperature of (Bi0.5- Na0.5)TiO3-BaTiO3 Lead-Free Piezoelectric Ceramics. Solid State Sciences, 10, 934-940.

[24]   David, L.W. and David, A.P. (2003) Microstructure Development in Reactive-Templated Grain Growth of Bi1/2Na1/2- TiO3-Based Ceramics: Template and Formulation Effects. Journal of the American Ceramic Society, 86, 769-774.

[25]   Richard, J., Pettry, G., Said, S., Marchet, P. and Mercurio, J.P. (2004) Sodium-Bismuth Titanate Based Lead-Free Ferroelectric Materials. Journal of the European Ceramic Society, 24, 1165-1169.

[26]   K.S. Rao, Rajulu, K.C.V., Tilak, B. and Swathi, A. (2010) Effect of Ba2+ in BNT Ceramics on Dielectric and Conductivity Properties. Nature Science, 2, 357-367.

[27]   Wu, E. (1989) “POWD”, An Interactive Powder Diffraction Data Interpretation and Indexing Programme. Ver. 2.1, School of Physical Sciences, Flinders University of South Australia, Bedford Park, S.A., 5042, Australia.

[28]   Peng, C., Li, J.-F. and Gong, W. (2005) Preparation and Properties of (Bi1/2Na1/2)TiO3-Ba(Ti,Zr)O3 Lead-Free Piezoelectric Ceramics. Materials Letters, 59, 1576-1580.

[29]   Rachakom, A., Jiansirisomboon, S. and Watcharapasorn, A. (2009) Journal of Microscopy Society of Thailand, 23, 107.

[30]   Rout, D., Moon, K.S., Kang, S.J.L. and Kim, I.W. (2010) Dielectric and Raman Scattering Studies of Phase Transitions in the (100-x)Na0.5Bi0.5TiO3-xSrTiO3 System. Journal of Applied Physics, 108, Article ID: 084102.

[31]   Eerd, B.W.V., Damjanovic, D., Klein, N., Setter, N. and Trodahl, J. (2010) Structural Complexity of (Na0.5Bi0.5)TiO3- BaTiO3 as Revealed by Raman Spectroscopy. Physical Review B, 82, Article ID: 104112.

[32]   Petzelt, J., Kamba, S., Fabry, J., Noujni, D., Porokhonskyy, V., Ashkin, A., Franke, I., Roleder, K., Suchanicz, J., Klein, R. and Kugel, G.E. (2004) Infrared, Raman and High-Frequency Dielectric Spectroscopy and the Phase Transitions in Na1/2Bi1/2TiO3. Journal of Physics: Condensed Matter, 16, 2719-2731.

[33]   Chaves, A., Katiyar, R.S. and Porto, S.P.S. (1974) Coupled Modes with A1 Symmetry in Tetragonal BaTiO3. Physical Review B, 10, 3522-3533.

[34]   Domenico Jr., M.D., Wemple, S.H., Porto, S.P.S. and Buman, P.R. (1968) Raman Spectrum of Single-Domain BaTiO3. Physical Review, 174, 522-530.

[35]   Sczancoski, J.C., Cavalcante, L.S., Badapanda, T., Rout, S.K., Panigrahi, S., Mastelaro, V.R., Varela, J.A., Li, M.S. and Longo, E. (2010) Structure and Optical Properties of [Ba1–xY2x/3](Zr0.25Ti0.75)O3 Powders. Solid State Sciences, 12, 1160-1167.