On Certain Theta Function Identities Analogous to Ramanujan’s *P-Q* Eta Function Identities

Abstract

The purpose of this paper is to provide direct proofs of certain theta function identities analogous to Ramanujan’s*P-Q* eta functions identities.

The purpose of this paper is to provide direct proofs of certain theta function identities analogous to Ramanujan’s

Cite this paper

nullK. Vasuki and A. Kahtan, "On Certain Theta Function Identities Analogous to Ramanujan’s*P-Q* Eta Function Identities," *Applied Mathematics*, Vol. 2 No. 7, 2011, pp. 874-882. doi: 10.4236/am.2011.27117.

nullK. Vasuki and A. Kahtan, "On Certain Theta Function Identities Analogous to Ramanujan’s

References

[1] B. C. Berndt, “Ramanujan’s Notebooks, Part IV,” Sprin-ger-Verlag, New York, 1994.

[2] S. Ramanujan, “Notebooks (2 Volumes),” Tata Institute of Fundamental Research, Bombay, 1957.

[3] B. C. Berndt and L.-C. Zhang, “Ramanujan’s Identities for Eta Functions,” Mathematische Annalen, Vol. 292, No. 1, 1992, pp. 561-573. doi:10.1007/BF01444636

[4] S. Ramanujan, “The Lost Notebook and Other Unpublished Paper,” Narosa, New Delhi, 1988.

[5] B. C. Berndt, “Modular Equations in Ramanujan’s Lost Notebook,” In: R. P. Bamvah, V. C. Dumir and R. S. Hans-Gill, Eds., Number Theory, Hindustan Book Co., Delhi, 1999, pp. 55-74.

[6] B. C. Berndt and H. H. Chan, “Some Values for Rogers-Ramanujan Continued Fraction,” Canadian Journal of Mathematics, Vol. 47, 1995, pp. 897-914. doi:10.4153/CJM-1995-046-5

[7] B. C. Berndt, H. H. Chan and L.-C. Zhang, “Ramanujan’s Class Invariants and Cubic Continued Fraction,” Acta Arithmetica, Vol. 73, 1995, pp. 67-85.

[8] C. Adiga, K. R. Vasuki and M. S. M. Naika, “Some New Explicit Evaluations of Ramanujan’s Cubic Continued Fraction,” New Zealand Journal of Mathematics, Vol. 31, 2002, pp. 109-114.

[9] C. Adiga, K. R. Vasuki and K. Shivashankara, “Some Theta Function Identities and New Explicit Evaluation of Rogers-Ramanujan Continued Fraction,” Tamsui Oxford Journal of Mathematical Sciences, Vol. 18, No. 1, 2002, pp. 101-117.

[10] N. D. Baruah, “On Some of Ramanujan’s Identities for Eta Functions,” Indian Journal of Mathematics, Vol. 43, 2000, pp. 253-266.

[11] N. D. Baruah and N. Saikia, “Some General Theorems on the Explicit Evaluations of Ramanujan’s Cubic Continued Fraction,” Journal of Computational and Applied Mathematics, Vol. 160, No. 1-2, 2003, pp. 37-51. doi:10.1016/S0377-0427(03)00612-5

[12] S. Bhargava, K. R. Vasuki and T. G. Sreeramamurthy, “Some Evaluations of Ramanujan’s Cubic Continued Fraction,” Indian Journal of Pure and Applied Mathematics, Vol. 35, 2004, pp. 1003-1025.

[13] S.-Y. Kang, “Ramanujan’s Formulas for Explicit Evaluation of the Rogers-Ramanujan Continued Fraction and Theta Functions,” Acta Arithmetica, Vol. 90, 1999, pp. 49-68.

[14] M. S. M. Naika and B. N. Dharmendra, “On Some New General Theorem for the Explicit Evaluations of Ramanujan’s Remarkable Product of Theta Function,” Ramanujan Journal, Vol. 15, No. 3, 2008, pp. 349-366. doi:10.1007/s11139-007-9081-1

[15] K. R. Vasuki, “On Some Ramanujan’s P-Q Modular Equations,” Journal of the Indian Mathematical Society, Vol. 73, No. 3-4, 2006, pp. 131-143.

[16] K. R. Vasuki and K. Shivashankara, “A Note on Explicit Evaluations of Products and Ratios of Class Invariants,” Math Forum, Vol. 13, 2000, pp. 45-46.

[17] K. R. Vasuki and T. G. Sreeramamurthy, “A Note on Explicit Evaluations of Ramanujan’s Continued Fraction,” Advanced Studies in Contemporary Mathematics, Vol. 9, 2004, pp. 63-80.

[18] K. R. Vasuki and B. R. Srivasta Kumar, “Certian Identities for Ramanujan-G¨ollnitz-Gordan Continued Fraction,” Journal of Computational and Applied Mathematics, Vol. 187, No. 1, 2006, pp. 87-95. doi:10.1016/j.cam.2005.03.038

[19] K. R. Vasuki and B. R. S. Kumar, “Evaluations of the Ramanujan-G¨ollnitz-Gordon Continued Fraction H(q) by Modular Equations,” Indian Journal of Mathematics, Vol. 48, No. 3, 2006, pp. 275-300.

[20] J. Yi, “Evaluations of the Rogers-Ramanujan’s Continued Fraction R(Q) by Modular Equations,” Acta Arithmetica, Vol. 97, No. 2, 2001, pp. 103-127. doi:10.4064/aa97-2-2

[21] C. Adiga, B. C. Berndt, S. Bhargava and G. N. Watson, “Chapter 16 of Ramanujan’s Second Notebook: Theta Functions and Q-Series,” Memoirs of the American Mathematical Society, Vol. 53, No. 315, 1985, pp. 55-74.

[22] B. C. Berndt, “Ramanujan’s Notebooks, Part III,” Springer-Verlag, New York, 1991.

[23] E. T. Whittaker and G. N. Watson, “A Course of Modern Analysis,” 4th Edition, Cambridge University Press, Cambridge, 1966.

[24] N. D. Baruah and R. Barman, “Certain Theta Function Identities and Ramanujan’s Modular Equations of Degree 3,” Indian Journal of Mathematics, Vol. 48, No. 3, 2006, pp. 113-133.

[25] K. R. Vasuki, G. Sharath and K. R. Rajanna, “Two Modular Equations for Squares of the Cubic-Functions with Applications,” Note di Mathematica (In Press).

[26] S.-Y. Kang, “Some Theorems in Rogers-Ramanujan Continued Fraction and Associated Theta Functions in Ramanujan’s Lost Notebook,” Ramanujan Journal, Vol. 3, No. 1, 1999, pp. 91-111. doi:10.1023/A:1009869426750

[27] S. Bhargava, K. R. Vasuki and K. R. Rajanna, “On Certain Identities of Ramanujan for Ratios of Eta Functions,” Preprint.