IJMNTA  Vol.4 No.3 , September 2015
Circular Obstacle Avoidance Control of the Compass-Type Biped Robot Based on a Blending Method of Discrete Mechanics and Nonlinear Optimization
Author(s) Tatsuya Kai
ABSTRACT
This paper considers an obstacle avoidance control problem for the compass-type biped robot, especially circular obstacles are dealt with. First, a sufficient condition such that the swing leg does not collide the circular obstacle is derived. Next, an optimal control problem for the discrete compass-type robot is formulated and a solving method of the problem by the sequential quadratic programming is presented in order to calculate a discrete control input. Then, a transformation method that converts a discrete control input into a continuous zero-order hold input via discrete Lagrange-d’ Alembert principle is explained. From the results of numerical simulations, it turns out that obstacle avoidance control for the continuous compass-type robot can be achieved by the proposed method.

Cite this paper
Kai, T. (2015) Circular Obstacle Avoidance Control of the Compass-Type Biped Robot Based on a Blending Method of Discrete Mechanics and Nonlinear Optimization. International Journal of Modern Nonlinear Theory and Application, 4, 179-189. doi: 10.4236/ijmnta.2015.43013.
References
[1]   McGeer, T. (1990) Passive Dynamic Walking. The International Journal of Robotics Research, 9, 62-82.
http://dx.doi.org/10.1177/027836499000900206

[2]   Goswami, A., Thuilot, B. and Espiau, B. (1998) A Study of the Passive Gait of a Compass-like Biped Robot: Symmetry and Chaos. The International Journal of Robotics Research, 17, 1282-1301.
http://dx.doi.org/10.1177/027836499801701202

[3]   Collins, S.H., Ruina, A., Tedrake, R. and Wisse, M. (2005) Efficient Bipedal Robots based on Passive-Dynamic Walkers. Science, 307, 1082-1085. http://dx.doi.org/10.1126/science.1107799

[4]   Hass, J., Herrmann, J.M. and Geisel, T. (2006) Optimal Mass Distribution for Passivity-based Bipedal Robots. The International Journal of Robotics Research, 25, 1087-1098.
http://dx.doi.org/10.1177/0278364906072449

[5]   Goswami, A., Espiau, B. and Keramane, A. (1997) Limit Cycles in a Passive Compass Gait Biped and Passivity Mimicking Control Laws. Autonomous Robots, 4, 273-286.
http://dx.doi.org/10.1023/A:1008844026298

[6]   Garcia, M., Chatterjee, A., Ruina, A. and Coleman, M.J. (1998) The Simplest Walking Model: Stability, Complexity, and Scaling. ASME Journal of Journal of Biomechanical Engineering, 120, 281-288.
http://dx.doi.org/10.1115/1.2798313

[7]   Grizzle, J.W., Abba, G. and Plestan, F. (2001) Asymptotically Stable Walking for Biped Robots: Analysis via Systems with Impulse Effects. IEEE Transactions on Automatic Control, 46, 51-64.
http://dx.doi.org/10.1109/9.898695

[8]   Hobbelen, D.G.E. and Wisse, M. (2008) Swing-Leg Retraction for Limit Cycle Walkers Improves Disturbance Rejection. IEEE Transactions on Robotics, 24, 377-389.
http://dx.doi.org/10.1109/TRO.2008.917002

[9]   Huang, Q., Yokoi, K., Kajita, S., Kaneko, K., Arai, H., Koyachi, N. and Tanie, K. (2001) Planning Walking Patterns for a Biped Robot. IEEE Transactions on Robotics and Automation, 17, 280-289.
http://dx.doi.org/10.1109/70.938385

[10]   Sardain, P. and Bessonnet, G. (2004) Forces Acting on a Biped Robot. Center of Pressure—Zero Moment Point. IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans, 34, 630-637.
http://dx.doi.org/10.1109/TSMCA.2004.832811

[11]   Erbatur, K. and Kurt, O. (2009) Natural ZMP Trajectories for Biped Robot Reference Generation. IEEE Transactions on Industrial Electronics, 56, 835-845. http://dx.doi.org/10.1109/TIE.2008.2005150

[12]   Taga, G., Yamaguchi, Y. and Shimizu, H. (1991) Self-Organized Control of Bipedal Locomotion by Neural Oscillators in Unpredictable Environment. Biological Cybernetics, 65, 147-159.
http://dx.doi.org/10.1007/BF00198086

[13]   Miller, W.T. (1994) Real-Time Neural Network Control of a Biped Walking Robot. IEEE Control Systems Magazine, 14, 41-48. http://dx.doi.org/10.1109/37.257893

[14]   Nakanishi, J., Morimoto, J., Endo, G., Cheng, G., Schaal, S. and Kawato, M. (2004) Learning from Demonstration and Adaptation of Biped Locomotion. Robotics and Autonomous Systems, 47, 79-91.
http://dx.doi.org/10.1016/j.robot.2004.03.003

[15]   Morimoto, J. and Atkeson, C.G. (2007) Learning Biped Locomotion Application of Poincare-Map-Based Reinforcement Learning. IEEE Robotics & Automation Magazine, 14, 41-51.
http://dx.doi.org/10.1109/MRA.2007.380654

[16]   Kai, T. and Shintani, T. (2011) A Discrete Mechanics Approach to Gait Generation for the Compass-Type Biped Robot. Nonlinear Theory and Its Applications, IEICE, 2, 533-547.

[17]   Kai, T. and Shintani, T. (2011) Discrete Mechanics Approach to Gait Generation for the Compass-Type Biped Robot. Proceedings of the 18th IFAC World Congress, Milano, 28 August 2011, 434-437. http://dx.doi.org/10.1587/nolta.2.533

[18]   Kai, T. and Shintani, T. (2011) A Gait Generation Method for the Compass-Type Biped Robot on Slopes via Discrete Mechanics. Proceedings of the 50th IEEE Conference CDC, Orlando, 12-15 December 2011, 675-681. http://dx.doi.org/10.1109/cdc.2011.6161060

[19]   Kai, T. and Shintani, T. (2012) Gait Generation on Periodically Unlevel Grounds for the Compass-Type Biped Robot via Discrete Mechanics. Proceedings of the International Conference MSC, Dubrovnik, 3-5 October 2012, 1374-1381.

[20]   Marsden, J.E., Patrick, G.W. and Shkoller, S. (1998) Multisymplectic Geometry, Variational Integrators and Nonlinear PDEs. Communications in Mathematical Physics, 199, 351-395.
http://dx.doi.org/10.1007/s002200050505

[21]   Kane, C., Marsden, J.E., Ortiz, M. and West, M. (2000) Variational Integrators and the Newmark Algorithm for Conservative and Dissipative Mechanical Systems. International Journal for Numerical Methods in Engineering, 49, 1295-1325.
http://dx.doi.org/10.1002/1097-0207(20001210)49:10<1295::AID-NME993>3.0.CO;2-W

[22]   Marsden, J.E. and West, M. (2001) Discrete Mechanics and Variational Integrators. Acta Numerica, 10, 3571-5145. http://dx.doi.org/10.1017/S096249290100006X

[23]   Junge, O., Marsden, J.E. and Ober-Blöbaum, S. (2005) Discrete Mechanics and Optimal Control. Proceedings of the 16th IFAC World Congress, Praha, 4-8 July 2005, Paper No. We-M14-TO/3.

[24]   Bloch, A.M., Leok, M., Marsden J.E. and Zenkov, D.V. (2005) Controlled Lagrangians and Stabilization of the Discrete Cart-Pendulum System. Proceedings of the 44th IEEE Conference CDC-ECC, Seville, 12-15 December 2005, 6579-6584. http://dx.doi.org/10.1109/cdc.2005.1583218

[25]   Bloch, A.M., Leok, M., Marsden, J.E. and Zenkov, D.V. (2006) Controlled Lagrangians and Potential Shaping for Stabilization of the Discrete Mechanical Systems. Proceedings of the 45th IEEE Conference CDC, San Diego, 13-15 December 2006, 3333-3338. http://dx.doi.org/10.1109/cdc.2006.376695

[26]   Kai, T. (2012) Control of the Cart-Pendulum System Based on Discrete Mechanics—Part I: Theoretical Analysis and Stabilization Control. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, E95-A, 525-533 http://dx.doi.org/10.1587/transfun.E95.A.525

[27]   Kai, T., Bito, K. and Shintani, T. (2012) Control of the Cart-Pendulum System based on Discrete Mechanics—Part II: Transformation to Continuous-Time Inputs and Experimental Verification. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, E95-A, 534-541.
http://dx.doi.org/10.1587/transfun.E95.A.534

[28]   Kai, T. and Bito, K. (2014) A New Discrete Mechanics Approach to Swing-Up Control of the Cart-Pendulum System. Communications in Nonlinear Science and Numerical Simulation, 19, 230-244.
http://dx.doi.org/10.1016/j.cnsns.2013.05.021

[29]   Gurwitz, C.B. and Overton, M.L. (1989) Sequential Quadratic Programming Methods Based on Approximating a Projected Hessian Matrix. SIAM Journal on Scientific and Statistical Computing, 10, 631-653.

[30]   Nocedal, J. and Wright, S.J. (2006) Numerical Optimization. Springer, Berlin.

 
 
Top