References
[1] Oksman, K., Skrifvars, M. and Selin, J.F. (2003) Natural Fibres as Reinforcement in Polylactic Acid (PLA) Composites. Composites Science & Technology, 63, 1317-1324.
http://dx.doi.org/10.1016/S0266-3538(03)00103-9
[2] Shirikant, N., Lascala, J.J., Can, E., Morye, S.S., Williams, G.I., Palmese, G.R., et al. (2001) Development and Application of Triglyceride-Based Polymers and Composites. Journal of Applied Polymer Science, 82, 703-723.
http://dx.doi.org/10.1002/app.1897
[3] Bledzki, A.K., Reihmane, S. and Gassan, J. (1998) Properties and Modification Methods for Vegetable Fibres for Natural Fibre Composites. Journal of Applied Polymer Science, 59, 1329-1336.
http://dx.doi.org/10.1002/(SICI)1097-4628(19960222)59:8<1329::AID-APP17>3.0.CO;2-0
[4] Zadorecki, P. and Flodin, P. (1986) Surface Modification of Cellulose Fibres. III. Durability of Cellulose-Polyester Composites under Environmental Ageing. Journal of Applied Polymer Science, 31, 1699-1707.
http://dx.doi.org/10.1002/app.1986.070310616
[5] Adekunle, K., Akesson, D. and Skrifvars, M. (2010) Biobased Composites Prepared by Compression Molding with a Novel Thermoset Resin from Soybean Oil and a Natural-Fiber Reinforcement. Journal of Applied Polymer Science, 116, 1759-1765.
http://dx.doi.org/10.1002/app.31634
[6] Hassan, A., Yahya, R., Yahaya, A.H., Tahir, A.R.M. and Hornsby, P.R. (2004) Tensile, Impact and Fiber Length Pro- perties of Injection-Molded Short and Long Glass Fiber-Reinforced Polyamide 6,6 Composites. Journal of Reinforced Plastics and Composites, 23, 969-986.
http://dx.doi.org/10.1177/0731684404033960
[7] Luo, S. and Netravali, A.N. (1999) Interfacial and Mechanical Properties of Environment-Friendly “Green” Composites Made from Pineapple Fibers and Poly(hydroxybutyrate-co-valerate) Resin. Journal of Materials Science, 34, 3709- 3719.
http://dx.doi.org/10.1023/A:1004659507231
[8] Dweib, M.A., Hu, B., O’Donnell, A., Shenton, H.W. and Woo, R.P. (2004) All Natural Composite Sandwich Beams for Structural Applications. Composite Structures, 63, 147-157.
http://dx.doi.org/10.1016/S0263-8223(03)00143-0
[9] Torres, F.G. and Cubillas, M.L. (2005) Study of the Interfacial Properties of Natural Fibre Reinforced Polyethylene. Polymer Testing, 24, 694-698.
http://dx.doi.org/10.1016/j.polymertesting.2005.05.004
[10] Liu, Z.S., Erhan, S.Z. and Calvert, P.D. (2007) Solid Freeform Fabrication of Epoxidized Soybean Oil/Epoxy Composite with Bis or Polyalkyleneamine Curing Agents. Composites Part A, 38, 87-93.
http://dx.doi.org/10.1016/j.compositesa.2006.01.009
[11] Hornsby, P.R., Hinrichsen, E. and Tarverdi, K. (1997) Preparation and Properties of Polypropylene Composites Reinforced with Wheat and Flax Straw Fibres: Part I Fibre Characterization. Journal of Materials Science, 32, 443-449.
http://dx.doi.org/10.1023/A:1018521920738
[12] Van den Oever, M.J.A., Bos, H.L. and Molenveld, K. (1999) Flax Fibre Physical Structure and Its Effect on Composite Properties: Impact Strength and Thermo-Mechanical Properties. Die Angewandte Makromolekulare Chemie, 272, 71-76.
http://dx.doi.org/10.1002/(SICI)1522-9505(19991201)272:1<71::AID-APMC71>3.0.CO;2-R
[13] Gamstedt, E.K., Skrifvars, M., Jacobsen, T.K. and Pyrz, R. (2002) Synthesis of Unsaturated Polyesters for Improved Interfacial Strength in Carbon Fibre Composites. Composites Part A: Applied Science and Manufacturing, 33, 1239-1252.
http://dx.doi.org/10.1016/S1359-835X(02)00077-5
[14] Gassan, J. and Bledzki, A.K. (2000) Possibilities to Improve the Properties of Natural Fiber Reinforced Plastics by Fiber Modification—Jute Polypropylene Composites. Applied Composite Materials, 7, 373-385.
http://dx.doi.org/10.1023/A:1026542208108
[15] Herrmann, A.S., Nickel, J. and Riedel, U. (1998) Construction Materials Based upon Biologically Renewable Resources—From Components to Finished Parts. Polymer Degradation and Stability, 59, 251-261.
http://dx.doi.org/10.1016/S0141-3910(97)00169-9
[16] Bledzki, A.K. and Gassan, J. (1996) Effect of Coupling Agents on the Moisture Absorption of Natural Fibre Reinforced Plastics. Die Angewandte Makromolekulare Chemie, 236, 129-139.
http://dx.doi.org/10.1002/apmc.1996.052360110
[17] Bledzki, A.K. and Gassan, J. (1999) Composites Reinforced with Cellulose Based Fibres. Progress in Polymer Science, 24, 221-274.
http://dx.doi.org/10.1016/S0079-6700(98)00018-5
[18] Young, R.A. (1976) Wettability of Wood Pulp Fibers: Applicability of Methodology. Wood and Fiber Science, 8, 120-128.
[19] Toussaint, A.F. and Luner, P. (1988) The Wetting Properties of Hydrophobically Modified Cellulose Surfaces. Proceedings of the 10th Cellulose Conference, 29, 1515-1530.
[20] Hodgson, K.T. and Berg, J.C. (1988) Dynamic Wettability Properties of Single Wood Pulp Fibres and Their Relationship to Absorbency. Wood and Fiber Science, 20, 3-17.
[21] Liu, F.P., Wolcott, M.P., Gardner, D.J. and Rials, T.G. (1994) Characterization of the Interface between Cellulosic Fibers and a Thermoplastic Matrix. Composite Interfaces, 2, 419-432.
[22] Sakata, I., Morita, M., Tsuruta, N. and Morita, K. (1993) Activation of Wood Surface by Corona Treatment to Improve Adhesive Bonding. Journal of Applied Polymer Science, 49, 1251-1258.
http://dx.doi.org/10.1002/app.1993.070490714
[23] Belgacem, M.N., Bataille, P. and Sapieha, S. (1994) Effect of Corona Modification on the Mechanical Properties of Polypropylene Cellulose Composites. Journal of Applied Polymer Science, 53, 379-385.
http://dx.doi.org/10.1002/app.1994.070530401
[24] Dong, S., Sapieha, S. and Schreiber, H.P. (1992) Rheological Properties of Corona Modified Cellulose/Polyethylene Composites. Polymer Engineering & Science, 32, 1734-1739.
http://dx.doi.org/10.1002/pen.760322212
[25] Nevel, T.P. and Zeronian, S.H. (1985) Cellulose Chemistry and Its Applications. Wiley, New York.
[26] Mittal, K.L. (1992) Silanes and Other Coupling Agents. VSP BV, Netherlands.
[27] Ugbolue, S.C.O. (1990) Structure/Property Relationships in Textile Fibres. Journal of the Textile Institute, 20, 41-43.
http://dx.doi.org/10.1080/00405169008688950
[28] Maldas, D. and Kokta, B.V. (1989) Improving Adhesion of Wood Fiber with Polystyrene by the Chemical Treatment of Fiber with a Coupling Agent and the Influence on the Mechanical Properties of Composites. Journal of Adhesion Science and Technology, 3, 529-539.
http://dx.doi.org/10.1163/156856189X00380