[1] Alvarez, L. R., & Koskela, E. (2007). Optimal Harvesting under Resource Stock and Price Uncertainty. Journal of Economic Dynamics and Control, 31, 2461-2485.
[2] Amacher, G. S., Brazee, R. J., & Deegan, P. (2011). Faustmann Continues to Yield. Journal of Forest Economics, 17, 231-234. http://dx.doi.org/10.1016/j.jfe.2011.06.001
[3] Brazee, R.J. (2001). The Faustmann Formula. Forest Science, 47, 44-49.
[4] Beskos, A., Papaspliopoulos, O., Roberts, G., & Fearnhead, P. (2006). Exact and Computationally Efficient Likelihood-Based Estimation for Discretely Observed Diffusion Processes (with Discussion). Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68, 333-382.
[5] Chang, S. J. (2001). One Formula Myriad Conclusions, 150 Years of Practicing the Faustmann Formula in Central Europe and the USA. Forest Policy and Economics, 2, 97-99.
http://dx.doi.org/10.1016/S1389-9341(01)00053-3
[6] Clarke, H. R., & Reed, W. J. (1989). The Tree Cutting Problem in a Stochastic Environment. Journal of Economics Dynamic and Control, 13, 569-595. http://dx.doi.org/10.1016/0165-1889(89)90004-3
[7] Faustmann, M. (1995). (Originally 1849). Calculation of the Value which Forest Land and Immature Stands Processess for Forestry. Journal of Forest Economics, 1, 7-44.
[8] Garcia, O. (2005). Unifying Sigmoid Univariate Growth Equations. Forest Biometry, Modelling and Information Sciences (FBMIS), 1, 63-68.
[9] Gaffney, M. M. (1957). Concepts of Financial Maturity of Timber and Other Assets. Agricultural Economics Information Series. Raleigth, NC: North Caroline State College.
[10] Gutierrez, R., Gutierrez-Sanchez, R., & Nafidi, A. (2008). Modelling and Forecasting Vehicle Stocks Using Trends of Stochastic Gompertz Diffusion Models. Applied Stochastic Models in Business and Industry, 25, 385-405.
[11] Insley, M. (2002). A Real Option Approach to the Valuation of a Forestry on Investment. Journal of Environmental Economics and Management, 44, 471-492.
[12] Insley, M., & Rollins, K. (2005). On Solving the Multi-Rotational Timber Harvesting Problem with Stochastic Prices: A Linear Complimentarily Formulation. American Journal of Agriculture Economics, 87, 735-755. http://dx.doi.org/10.1111/j.1467-8276.2005.00759.x
[13] Johnson, T. C. (2006). The Optimal Timing of Investment Decisions. PhD Thesis, London: University of London.
[14] Kloeden, P., & Platen, E. (1992). Numerical Solution of Stochastic Differential Equation (p. 125). Berlin: Springer-Verlag. http://dx.doi.org/10.1007/978-3-662-12616-5
[15] Meyer, P., Yung, J., & Ausubel, J. (1999). A Primer on Logistic Growth and Substitution: The Mathematics of the Logolet Lab Software. Technological Foresting and Social Change.
[16] MININCO (2006). Santibáñez P. Los Angeles.
[17] Morck, R., & Schwartz, E. (1989). The Valuation of Forestry Resources under Stochastic Prices and Inventories. Journal of Financial and Quantitative Analysis, 24, 473-487.
http://dx.doi.org/10.2307/2330980
[18] Navarrete, E. (2011). Modelling Optimal Pine Stands Harvest under Stochastic Wood Stock and Price in Chile. Forest Policy and Economics, 15, 54-59.
[19] Navarrete, E., & Bustos, J. (2013). Faustmann Optimal Pine Stands Stochastic Rotation Problem. Forest Policy and Economics, 30, 39-45. http://dx.doi.org/10.1016/j.forpol.2013.02.007
[20] Samuelson, P. (1976). Economics of Forestry in an Evolving Economy. Economic Inquiry, 14, 466-491.
http://dx.doi.org/10.1111/j.1465-7295.1976.tb00437.x
[21] Sodal, S. (2002). The Stochastic Rotation Problem: A Comment. Journal of Economics & Control, 26, 509-515. http://dx.doi.org/10.1016/S0165-1889(00)00076-2
[22] Thijssen, J. J. J. (2010). Irreversible Investment and Discounting: An Arbitrage Pricing Approach. Annals of Finance, 6, 295-315. http://dx.doi.org/10.1007/s10436-008-0108-4
[23] Willassen, Y. (1998). The Stochastic Rotation Problem: A Generalization of Faustmann’s Formula to a Stochastic Forest Growth. Journal of Economic Dynamics and Control, 22, 573-596.
http://dx.doi.org/10.1016/S0165-1889(97)00071-7