JMP  Vol.6 No.9 , August 2015
Fundamental Physical Basis for Maxwell-Heaviside Gravitomagnetism
Gravitomagnetism is universally and formally recognised in contemporary physics as being the linear first-order approximation of Einstein’s field equations emerging from the General Theory of Relativity (GTR). Herein, we argue that, as has been done by others in the past, gravitomagnetism can be viewed as a fully-fledged independent theory of gravitomagnetism that can be divorced from Professor Einstein’s GTR. The gravitomagnetic theory whose exposition we give herein is exactly envisioned by Professor Maxwell and Dr. Heaviside. The once speculative Maxwell-Heaviside Gravitomagnetic theory now finds full justification as a fully fledged theory from Professor José Hera’s Existence Theorem which states that all that is needed for there to exist the four Max-well-type field equations is that a mass-current conservation law be obeyed. Our contribution in the present work, if any, is that we demonstrate conclusively that like electromagnetism, the gravitomagnetic phenomenon leads to the prediction of gravitomagnetic waves that travel at the speed of light. Further, we argue that for the gravitational phenomenon, apart from the Newtonian gravitational potential, there are four more potentials and these operate concurrently with the Newtonian potential. At the end of it, it is seen that the present work sets the stage for a very interesting investigation of several gravitational anomalies such as the ponderous Pioneer Anomaly, the vexing Flyby Anomalies, the mysterious Anomalous Rotation Curves of Spiral Galaxies and as well, the possibility of the generation of stellar magnetic fields by rotating gravitational masses.

Cite this paper
Nyambuya, G. (2015) Fundamental Physical Basis for Maxwell-Heaviside Gravitomagnetism. Journal of Modern Physics, 6, 1207-1219. doi: 10.4236/jmp.2015.69125.
[1]   Maxwell, J.C. (1865) Philosophical Transactions of the Royal Society, 155, 459-512.

[2]   Behera, H. (2006) Newtonian Gravitomagnetism and Analysis of Earth Satellite Results. arXiv:gr-qc/0510003v2

[3]   Heaviside, O. (1893) The Electrician, 31, 281-282.

[4]   Heaviside, O. (1894) Electromagnetic Theory. The Electrician Printing and Publishing Co., London, 455-465.

[5]   Jefimenko, O.D. (2000) Causality, Electromagnetic Induction and Gravitation: A Different Approach to the Theory of Electromagnetic and Gravitational Fields. Electret Scientific, Star City.

[6]   Hera, J.A. (2007) American Journal of Physics, 75, 652.

[7]   Mashhoon, B. (2007) Gravitoelectromagnetism: A Brief Review. In: The Measurement of Gravitomagnetism: A Challenging Enterprise, NOVA Science, Hauppauge, New York, 29-39.

[8]   Ruggiero, M.L. and Tartaglia, A. (2002) Il Nuovo Cimento B, B, 117.

[9]   Ciufolini, I., Lucchesi, D., Vespe, F. and Chieppa, F. (1997) Europhysics Letters, 39, 359.

[10]   Landau, L.D. and Lifschitz, E.M. (1987) The Classical Theory of Fields. Pergamon Press, Oxford.

[11]   Singh, A. (1981) Lettere al Nuovo Cimento, 32, 231-234.

[12]   Misner, C.W., Thorne, K.S. and Wheeler, J.A. (1973) Gravitation. Freeman W. H. and Company, San Francisco.

[13]   Weinberg, S. (1972) Gravitation and Cosmology. John Wiley, New York.

[14]   Majerník, V. (1971) Astrophysics and Space Science, 14, 265-285.

[15]   Nyambuya, G.G. (2014) Journal of Modern Physics, 5, 1733-1766.

[16]   Einstein, A. (1913) Physikalische Zeitschrift, 14, 1249-1266.

[17]   Einstein, A. (1912) Vierteljahrsschrift für gerichtliche Medizin und öffentliches Sanitätswesen, 44, 37-40.

[18]   Torreti, R. (1996) Relativity and Geometry. Dover Publications Inc., New York, 130.

[19]   Nyambuya, G.G., Makwanya, T., Tuturu, B.A. and Tsoka, W. (2015) Astrophysics and Space Science, 358, 1-12.

[20]   Nyambuya, G.G. (2015) Monthly Notices of the Royal Astronomical Society, 451, 3034-3043.

[21]   Nyambuya, G.G. (2010) Monthly Notices of the Royal Astronomical Society (London), 403, 1381-1391.

[22]   Tu, L.-C., Luo, J. and Gillies, T.G. (2005) Reports on Progress in Physics, 68, 77-130.

[23]   Heeck, J. (2013) Physical Review Letters, 111, Article ID: 021801.

[24]   Nyambuya, G.G. (2014) Journal of Modern Physics, 5, 2111-2124.

[25]   Nyambuya, G.G. (2014) Journal of Modern Physics, 5, 1902-1909.

[26]   Lorentz, H.A. (1892) Archives Néerlandaises des Sciences Exactes et Naturelles, 25, 287-301.

[27]   Nyambuya, G.G. (2014) Journal of Modern Physics, 5, 1-10.

[28]   Elbeze, A.C. (2013) SpringerPlus, 2, 513.

[29]   Arbab, A.I. (2012) Journal of Modern Physics, 3, 1231-1235.

[30]   Iorio, L., Lichtenegger, H.I.M., Ruggiero, M. and Corda, C. (2011) Astrophysics and Space Science, 331, 351-395.

[31]   Arbab, A.I. (2010) Astrophysics and Space Science, 325, 37-40.

[32]   Ahmedov, B.J. and Rakhmatov, N.I. (2003) Foundations of Physics, 33, 625-639.

[33]   Field, J.H. (2006) Physica Scripta, 73, 639-647.

[34]   Dmitriyev, V.P. (2002) Can We Derive the Lorentz Force from Maxwell’s Equations?

[35]   Rubin, V.C., Burstein, D., Ford Jr., W.K. and Thonnard, N. (1985) The Astrophysical Journal, 289, 81-98, 101-104.

[36]   Rubin, V.C., Roberts, M.S., Graham, J.A., Ford Jr., W.K. and Thonnard, N. (1970) The Astrophysical Journal, 81, 687-718.

[37]   Rubin, V.C. and Ford Jr., W.K. (1970) The Astrophysical Journal, 159, 379.

[38]   Zwicky, F. (1933) Helvetica Physica Acta, 6, 110-127.

[39]   Zwicky, F. (1933) The Astrophysical Journal, 86, 217-246.

[40]   Anderson, J.D., Campbell, J.K., Ekelund, J.E., Ellis, J. and Jordan, J.F. (2008) Physical Review Letters, 100, Article ID: 091102.

[41]   Anderson, J.D., Campbell, J.K. and Nieto, M.M. (2007) New Astronomy, 12, 383-397.

[42]   Turyshev, S.G., Toth, V.T., Kinsella, G., Lee, S.-C., Lok, S.M. and Ellis, J. (2012) Physical Review Letters, 108, Article ID: 241101.

[43]   Turyshev, S.G. and Toth, T.T. (2011) Living Reviews in Relativity, 13, 1-175.

[44]   Bovaird, T. and Lineweaver, C.H. (2013) Monthly Notices of the Royal Astronomical Society, 435, 1126-1138.

[45]   Dubrulle, B. and Graner, F. (1994) Astronomy and Astrophysics, 282, 262-268.

[46]   Dubrulle, B. and Graner, F. (1994) Astronomy and Astrophysics, 282, 269-276.

[47]   Standish, E.M. and Williams, J.C. (2010) Orbital Ephemerides of the Sun, Moon, and Planets. International Astronomical Union Commission 4: (Ephemerides), 1381-1391.

[48]   Anderson, J.D. and Neito, M.M. (2009) Astrometric Solar-System Anomalies. In: Klioner, S., Seidelmann, P.K. and Soffel, M., Eds., Relativity in Fundamental Astronomy: Dynamics, Reference Frames, and Data Analysis, Cambridge University Press, Cambridge, 189-197.

[49]   Standish, E.M. (2005) The Astronomical Unit Now. In: Kurtz, D.W., Ed., Transits of Venus: New Views of the Solar System and Galaxy, Cambridge University Press, Cambridge, 163-179.

[50]   Krasinsky, G.A. and Brumberg, V.A. (2004) Celestial Mechanics and Dynamical Astronomy, 90, 267-288.

[51]   Williams, J.G., Boggs, S. and Schillak, D.H. (2009) The Astronomical Unit Now. In: Williams, J.G., Boggs, S. and Schillak, D.H., Eds., Transits of Venus: New Views of the Solar System and Galaxy, Number 196 in Proceedings of 16th International Workshop on Laser Ranging, Space Research Centre, Polish Academy of Sciences.

[52]   Williams, J.G., Turyshev, S.G. and Boggs, D.H. (2004) Physical Review Letters, 93, Article ID: 261101.

[53]   Dirac, P.A.M. (1937) Nature, 139, 323-323.

[54]   Milne, E.A. (1935) Relativity, Gravity and World Structure. Oxford University Press, Oxford.

[55]   Mould, J. and Uddin, S.A. (2014) PASA—Publications of the Astronomical Society of Australia, 31.