Small Sample Behaviors of the Delete-d Cross Validation Statistic

Show more

References

[1] Zhang, P. (1993) Model Selection via Multifold Cross Validation. The Annals of Statistics, 21, 299-313.

http://dx.doi.org/10.1214/aos/1176349027

[2] McQuarrie, A.D.R. and Tsai, C. (1998) Regression and Time Series Model Selection. World Scientific Publishing Co. Pte. Ltd., River Edge, NJ.

[3] Seber, G.A.F. and Lee, A.J. (2003) Linear Regression Analysis, Second Edition. John Wiley & Sons, Inc., Hoboken, NJ.

http://dx.doi.org/10.1002/9780471722199

[4] Allen, D.M. (1974) The Relationship between Variable Selection and Data Augmentation and a Method for Prediction. Technometrics, 16, 125-127.

http://dx.doi.org/10.1080/00401706.1974.10489157

[5] Stone, M. (1974) Cross-Validatory Choice and Assessment of Statistical Prediction (with Discussion). Journal of the Royal Statistical Society (Series B), 36, 111-147.

[6] Geisser, S. (1975) The Predictive Sample Reuse Method with Applications. Journal of the American Statistical Association, 70, 320-328.

http://dx.doi.org/10.1080/01621459.1975.10479865

[7] Breiman, L., Friedman, J.H., Olshen, R.A. and Stone, C.J. (1984) Classification and Regression Trees. Wadsworth, Belmont, CA.

[8] Hjorth, J.S.U. (1994) Computer Intensive Statistical Methods. Chapman & Hall/CRC, New York.

[9] Miller, A. (2002) Subset Selection in Regression. 2nd Edition, Chapman & Hall/CRC, New York.

http://dx.doi.org/10.1201/9781420035933

[10] Davison, A.C. and Hinkley, D.V. (1997) Bootstrap Methods and their Application. Cambridge University Press, New York.

http://dx.doi.org/10.1017/CBO9780511802843

[11] Shao, J. (1993) Linear Model Selection by Cross-Validation. Journal of the American Statistical Association, 88, 486-494.

http://dx.doi.org/10.1080/01621459.1993.10476299

[12] Mallows, C.L. (1973) Some Comments on Cp. Technometrics, 15, 661-675.

[13] Akaike, H. (1973) Information Theory and an Extension of the Maximum Likelihood Principle. Proceedings of 2nd International Symposium on Information Theory, Budapest, 267-281.

[14] Shao, J. (1997) An Asymptotic Theory for Linear Model Selection. Statistica Sinica, 7, 221-264.

[15] Shibata, R. (1984) Approximate Efficiency of a Selection Procedure for the Number of Regression Variables. Biometrika, 71, 43-49.

http://dx.doi.org/10.1093/biomet/71.1.43

[16] Akaike, H. (1970) Statistical Predictor Identification. Annals of the Institute of Statistical Mathematics, 22, 203-217.

http://dx.doi.org/10.1007/BF02506337

[17] Shao, J. and Tu, D. (1995) The Jackknife and Bootstrap. Springer-Verlag, Inc., New York.

http://dx.doi.org/10.1007/978-1-4612-0795-5

[18] Stein, C. (1960) Multiple Regression. In: Olkin, I., et al., Eds., Contributions to Probability and Statistics, Stanford University Press, Stanford, CA, 424-443.

[19] Bendel, R.B. (1973) Stopping Rules in Forward Stepwise-Regression. Ph.D. Dissertation, Univ. of California at Los Angeles.