[1] Williams, K.S. (2012) Fourier Series of a Class of Eta Quotients. International Journal of Number Theory, 8, 993-1004.
http://dx.doi.org/10.1142/S1793042112500595
[2] Yao, O.X.M., Xia, E.X.W. and Jin, J. (2013) Explicit Formulas for the Fourier Coefficients of a Class of Eta Quotients. International Journal of Number Theory, 9, 487-503.
http://dx.doi.org/10.1142/S179304211250145X
[3] Köhler, G. (2011) Eta Products and Theta Series Identities. Springer-Verlag, Berlin.
http://dx.doi.org/10.1007/978-3-642-16152-0
[4] Gordon, B. (1961) Some Identities in Combinatorial Analysis. Quarterly Journal of Mathematics, 12, 285-290.
[5] Kac, V.G. (1978) Infinite-Dimensional Algebras, Dedekind’s η-Function, Classical Möbius Function and the Very Strange Formula. Advances in Mathematics, 30, 85-136.
http://dx.doi.org/10.1016/0001-8708(78)90033-6
[6] Macdonald, I.G. (1972) Affine Root Systems and Dedekind’s η-Function. Inventiones Mathematicae, 15, 91-143.
http://dx.doi.org/10.1007/BF01418931
[7] Zucker, I.J. (1987) A Systematic Way of Converting Infinite Series into Infinite Products. Journal of Physics A, 20, L13-L17.
http://dx.doi.org/10.1088/0305-4470/20/1/003
[8] Zucker, I.J. (1990) Further Relations amongst Infinite Series and Products: II. The Evaluation of Three-Dimensional Lattice Sums. Journal of Physics A, 23, 117-132.
http://dx.doi.org/10.1088/0305-4470/23/2/009
[9] Kendirli, B. (2015) Evaluation of Some Convolution Sums by Quasimodular Forms. European Journal of Pure and Applied Mathematics, 8, 81-110.
[10] Kendirli, B. (2015) Evaluation of Some Convolution Sums and Representation Numbers of Quadratic Forms of Discriminant -135. British Journal of Mathematics and Computer Science, 6, 494-531.
http://dx.doi.org/10.9734/BJMCS/2015/13973
[11] Kendirli, B. (2014) Evaluation of Some Convolution Sums and the Representation Numbers. Ars Combinatoria, CXVI, 65-91.
[12] Kendirli, B. (2012) Cusp Forms in and the Number of Representations of Positive Integers by Some Direct Sum of Binary Quadratic Forms with Discriminant -79. Bulletin of the Korean Mathematical Society, 49, 529-572.
http://dx.doi.org/10.4134/BKMS.2012.49.3.529
[13] Kendirli, B. (2012) Cusp Forms in and the Number of Representations of Positive Integers by Some Direct Sum of Binary Quadratic Forms with Discriminant -47. International Journal of Mathematics and Mathematical Sciences, 2012, Article ID: 303492.
[14] Kendirli, B. (2012) The Bases of , and the Number of Representations of Integers. Mathematical Problems in Engineering, 2013, Article ID: 695265.
[15] Alaca, A., Alaca, S. and Williams, K.S. (2006) On the Two-Dimensional Theta Functions of Borweins. Acta Arithmetica, 124, 177-195.
http://dx.doi.org/10.4064/aa124-2-4
[16] Alaca, A., Alaca, S. and Williams, K.S. (2006) Evaluation of the convolution sums and . Advances in Theoretical and Applied Mathematics, 1, 27-48.
[17] Gordon, B. and Robins, S. (1995) Lacunarity of Dedekind η-Products. Glasgow Mathematical Journal, 37, 1-14.
http://dx.doi.org/10.1017/S0017089500030329
[18] Diamond, F. and Shurman, J. (2005) A First Course in Modular Forms. Springer Graduate Texts in Mathematics 228. Springer, New York.