JMP  Vol.6 No.8 , July 2015
Gap Mesh Wire Control on Nano-Particles Growth
Author(s) Ahmed Rida Galaly1,2
ABSTRACT
The influence effect of different holes per inch on the plasma parameters and particle growth has been studied by compression between two different gap Aluminum meshes of 3 mm width, and 8 holes per inch (8 h/in) and 0.3 mm width and 20 holes per inch (20 h/in) at very low pressure. The perforated aluminum mesh with small diameter holes 20 h/in shows a better glow discharge stabilization than mesh with large diameter holes 8 h/in. For both 20 h/in and 8 h/in, sharp axial decrements for electron Temperature (Te), where Te decreased from 5.2 to 3.8 eV for 8 h/in, from 2.75 to 1.8 eV for 20 h/in. In contrast sharp axial increments for electron density (Ne), whereas Ne increased from 0.9 × 109 to 20 × 109 cm-3 for 8 h/in and from 8 × 109 to 42 × 109 cm-3 for 20 h/in. Silicon wafer [100] was exposed directly behind the meshes to realize nano-particle growth in sputtering discharge, where there are two different particles shapes: spherical shape particles produced by 20 h/in, and filamentary-shaped fractal particles formed by 8 h/in. The particle radius growth for 20 h/in was in the range of 4.67 - 301 nm during exposure time 40 - 95 min, and for 8 h/in were in the range of 9.2 - 28.8 nm during exposure time 60 - 95 min.

Cite this paper
Galaly, A. (2015) Gap Mesh Wire Control on Nano-Particles Growth. Journal of Modern Physics, 6, 1162-1170. doi: 10.4236/jmp.2015.68120.
References
[1]   Lommatzsch, U., Pasedag, D., Baalmann, A., Ellinghorst, G. and Wagner, H. (2007) Plasma Processes and Polymers, 4, S1041-S1045.

[2]   Goree, J. (1994) Plasma Sources Science and Technology, 3, 400.
http://dx.doi.org/10.1088/0963-0252/3/3/025

[3]   Bai, K., Hong, J., You, S., Choi, C. and Chang, H. (2002) Physics of Plasmas, 9, 1025.
http://dx.doi.org/10.1063/1.1436129

[4]   Galaly, A.R. and El Akshar, F.F. (2013) Physica Scripta, 88, Article ID: 065503.
http://dx.doi.org/10.1088/0031-8949/88/06/065503

[5]   Rax, J.M. (2007) Physique des Plasmas. Dundod, Paris.

[6]   Samsonov, D. and Goree, J. (1999) Journal of Vacuum Science & Technology A, 17, 2835.
http://dx.doi.org/10.1116/1.581951

[7]   Kim, H.U., Yi, C. and Rhee, S.W. (2004) Journal of Materials Science: Materials in Electronics, 15, 37-41
http://dx.doi.org/10.1023/A:1026240904706

[8]   Galaly, A.R., Elakshar, F.F. and Atta Khedr, M.A. (2013) Materials Science Forum, 50, 756.

[9]   Bogaerts, A., Neyts, E., Gijbels, R. and Mullen, J. (2002) Spectrochimica Acta, 57B, 609.

[10]   Haacke, M. and Pietsch, G.J. (2000) Some Features of Dielectric Barrier Discharge. Proc. 13th Int. Conf. Gas Discharges & Their Applications, Glasgow, 267-270.

[11]   Pustylnik, M., Ohno, N. and Takamura, S. (2006) Japanese Journal of Applied Physics, 45, 926-932.
http://dx.doi.org/10.1143/JJAP.45.926

[12]   McWhirter, R.W.P. (1965) Plasma Diagnostic Techniques. Academic Press, New York, 201.

[13]   Chen, F.F., Leonard, S. and Huddlestone, E. (1965) Plasma Diagnostic Techniques. Academic Press, New York.

[14]   Brown, S.C. (1966) Introduction to Electrical Discharges in Gases. Wiley, New York.

[15]   Chapman, B. (1980) Glow Discharges Processes. Wiley, New York.

[16]   Hong, J.I., Seo, S.H., Kim, S.S., Yoon, N.S., Chang, C.S. and Chang, H.Y. (1999) Physics of Plasmas, 6, 1017. http://dx.doi.org/10.1063/1.873342

[17]   Hoekstra, R.J. and Kushner, M.J. (1998) Journal of Vacuum Science & Technology B, 16, 2102.
http://dx.doi.org/10.1116/1.590135

[18]   Sirghia, L., Hatanaka, Y. and Popa, G. (2002) Journal of Applied Physics, 91, 4026-4032.

[19]   Buntat, Z., Harry, J.E. and Smith, I.R. (2007) Elektrika, 9, 60-65.

[20]   Kogelschatz, U. (2003) Plasma Chemistry and Plasma Processing, 23, 1-46.
http://dx.doi.org/10.1023/A:1022470901385

[21]   Parks, G.K. (2004) Physics of Space Plasmas. Addison Wesley, Redwood City.

[22]   Chen, X.B., Qiu, H., Qian, H., Wu, P., Wang, F.P., Pan, L.Q. and Tian, Y. (2004) Vacuum, 75, 217-223. http://dx.doi.org/10.1016/j.vacuum.2004.03.001

[23]   Eser, E. and Ogilvie, R.E. (1978) Journal of Vacuum Science and Technology, 15, 199.
http://dx.doi.org/10.1116/1.569454

 
 
Top