[1] Zadeh, L.A. (1965) Fuzzy Sets. Information and Control, 8, 338-353.
http://dx.doi.org/10.1016/S0019-9958(65)90241-X
[2] Li, Z.-Y., Zhang, C. and Wang, T.-J. (2010) Studying on the Interval Financial Times Series and Evaluating on the Forecast. Journal of Applied Statistics and Management, 29, 129-136.
[3] D’Urso, P. and Gastaldi, T. (2000) A Least-Squares Approach to Fuzzy Linear Regression Analysis. Computational Statistics and Data Analysis, 34, 427-440.
http://dx.doi.org/10.1016/S0167-9473(99)00109-7
[4] Li, Z.-Y., Liu, W.-Y. and Wang, T.-J. (2009) Fuzzy Bilinear Regression of Yields Series. Statistical Research, 26, 68-73.
[5] Wang, H.-D., Guo, S.-C. and Yue, L.-Z. (2014) An Approach to Fuzzy Multiple Linear Regression Mode Based on the Structured Element Theory. Systems Engineering—Theory & Practice, 34, 2628-2636.
[6] Hu, B.-Q. (2010) Foundations of Fuzzy Theory. Wuhan University Press, Wuhan, 103-114.
[7] Xu, R.N. (1991) A Linear Regression Model in Fuzzy Environment. Advances in Modelling Simulation, 27, 31-40.
[8] Fan, J.Q. and Yao, Q.W. (2003) Nonlinear Time Series. Springer, Berlin, 243-245.
[9] Cai, Z.W., Fan, J.Q. and Yao, Q.W. (2000) Functional-Coefficient Regression Models for Nonlinear Times Series. Journal of the American Statistical Association, 95, 941-956.
http://dx.doi.org/10.1080/01621459.2000.10474284