[1] Coutsikos, P., Magoulas, K. and Kontogeorgis, G.M. (2003) Prediction of Solid-Gas Equilibria with the Peng-Robin- son Equation of State. The Journal of Supercritical Fluids, 25, 197-212.
http://dx.doi.org/10.1016/S0896-8446(02)00142-0
[2] Cygnarowicz, M.L., Maxwell, R.J. and Seider, W.D. (1990) Equilibrium Solubilities of β-Carotene in Supercritical Carbon Dioxide. Fluid Phase Equilibria, 59, 57-71.
http://dx.doi.org/10.1016/0378-3812(90)85146-2
[3] Ashour, I., Almehaideb, R., Fateen, S.-E. and Aly, G. (2000) Representation of Solid-Supercritical Fluid Phase Equilibria Using Cubic Equations of State. Fluid Phase Equilibria, 167, 41-61.
http://dx.doi.org/10.1016/S0378-3812(99)00314-3
[4] Tabernero, A., del Valle, E.M.M. and Galán, Má. (2010) A Comparison between Semiempirical Equations to Predict the Solubility of Pharmaceutical Compounds in Supercritical Carbon Dioxide. The Journal of Supercritical Fluids, 52, 161-174.
http://dx.doi.org/10.1016/j.supflu.2010.01.009
[5] Cortesi, A., Kikic, I., Alessi, P., Turtoi, G. and Garnier, S. (1999) Effect of Chemical Structure on the Solubility of Antioxidants in Supercritical Carbon Dioxide: Experimental Data and Correlation. The Journal of Supercritical Fluids, 4, 139-144.
http://dx.doi.org/10.1016/S0896-8446(98)00119-3
[6] Garnier, S., Neau, E., Alessi, P., Cortesi, A. and Kikic, I. (1999) Modeling Solubility of Solids in Supercritical Fluids Using Fusion Properties. Fluid Phase Equilibria, 158-160, 491-500.
http://dx.doi.org/10.1016/S0378-3812(99)00151-X
[7] Méndez-Santiago, J. and Teja, A.S. (1999) The Solubility of Solids in Supercritical Fluids. Fluid Phase Equilibria, 158- 160, 501-510.
http://dx.doi.org/10.1016/S0378-3812(99)00154-5
[8] Harvey, A.H. (1990) Supercritical Solubility of Solids from Near-Critical Dilute-Mixture Theory. The Journal of Phy- sical Chemistry, 94, 8403-8406.
http://dx.doi.org/10.1021/j100385a009
[9] Nasri, L., Bensaad, S. and Bensetiti, Z. (2013) Correlation and Prediction of the Solubility of Solid Solutes in Chemically Diverse Supercritical Fluids Based on the Expanded Liquid Theory. Advances in Chemical Engineering and Sci- ence, 3, 255-273.
http://dx.doi.org/10.4236/aces.2013.34033
[10] Kumar, S.K. and Johnston, K.P. (1988) Modeling the Solubility of Solids in Supercritical Fluids with Density as the Independent Variable. The Journal of Supercritical Fluids, 1, 15-22.
http://dx.doi.org/10.1016/0896-8446(88)90005-8
[11] Johanna, M.H. and Sengers, L. (1991) Solubility near the Solvent’s Critical Point. The Journal of Supercritical Fluids, 4, 215-222.
http://dx.doi.org/10.1016/0896-8446(91)90013-V
[12] Sparks, D.L., Hernandez, R. and Estévez, L.A. (2008) Evaluation of Density-Based Models for the Solubility of Solids in Supercritical Carbon Dioxide and Formulation of a New Model. Chemical Engineering Science, 63, 4292-4301.
http://dx.doi.org/10.1016/j.ces.2008.05.031
[13] Goldfarb, J.L. and Suuberg, E. M. (2008) Vapor Pressures and Enthalpies of Sublimation of Ten Polycyclic Aromatic Hydrocarbons Determined via the Knudsen Effusion Method. Journal of Chemical & Engineering Data, 53, 670-676.
http://dx.doi.org/10.1021/je7005133
[14] Prausnitz, J.M., Lichtenthaler, R.N., de Azevedo, E.G. (1999) Molecular Thermodynamics of Fluid-Phase Equilibria. 3rd Edition, Prentice Hall Inc., Engelwood Cliffs.
[15] Schmitt, W.J. and Reid, R.C. (1986) Solubility of Monofunctional Organic Solids in Chemically Diverse Supercritical Fluids. Journal of Chemical & Engineering Data, 31, 204-212.
http://dx.doi.org/10.1021/je00044a021
[16] McEachern, D.M., Sandoval, O. and Iniguez, J.C. (1975) Vapor Pressures, Derived Enthalpies of Sublimation, Enthalpies of Fusion, and Resonance Energies of Acridine and Phenazine, The Journal of Chemical Thermodynamics, 7, 299- 306.
http://dx.doi.org/10.1016/0021-9614(75)90069-5
[17] Delle, S.A. (1997) The Vapor Pressure of Environmentally Significant Organic Chemicals: A Review of Methods and Data at Ambient Temperature. Journal of Physical and Chemical Reference Data, 26, 157-193.
http://dx.doi.org/10.1063/1.556006
[18] Hansen, P.C. and Eckert, C.A. (1986) An Improved Transpiration Method for the Measurement of Very Low Vapor Pressure. Journal of Chemical & Engineering Data, 31, 1-3.
http://dx.doi.org/10.1021/je00043a001
[19] Oliveira, J.A.S.A., Monte, M.J.S., Notario, R. and Ribeiro da Silva, M.D.M.C. (2014) Experimental and Computational Study of the Thermodynamic Properties. The Journal of Chemical Thermodynamics, 76, 56-63.
http://dx.doi.org/10.1016/j.jct.2014.03.005
[20] Huang, Z.S., Kawi, S. and Chiew, Y.C. (2004) Application of the Perturbed Lennard-Jones Chain Equation of State to Solute Solubility in Supercritical Carbon Dioxide. Fluid Phase Equilibria, 216, 111-122.
http://dx.doi.org/10.1016/j.fluid.2003.10.004
[21] Bardi, G., Malaspina, L. and Piacenti, V. (1973) Vapor Pressure and Sublimation Enthalpy of Anthraquinone and of 1,5- and 1,8-Dihydroxyanthraquinone. Journal of Chemical & Engineering Data, 18, 126-130.
http://dx.doi.org/10.1021/je60057a024
[22] Sasse, K., N’guimbi, J., Jose, J. and Merlin, J.C. (1989) Tension de vapeur d’hydrocarbures polyaromatiques dans le domaine 10-3-10 Torr. Thermochimica Acta, 146, 53-61.
http://dx.doi.org/10.1016/0040-6031(89)87075-3
[23] Da Silva, M.A.V. and Ribeiro, Monte, M.J.S. (1990) The Construction, Testing and Use of a New Knudsen Effusion Apparatus. Thermochimica Acta, 171, 169-183.
http://dx.doi.org/10.1016/0040-6031(90)87017-7
[24] Eckert, Z. (1983) Correlation and Prediction of Solid-Supercritical Fluid Phase Equilibria. Industrial and Engineering Chemistry Process Design and Development, 22, 582-588.
http://dx.doi.org/10.1021/i200023a005
[25] Colomina, M., Jimenez, P., Roux, M.V. and Turrion, C. (1979) Thermochemical Properties of Naphthalene Derivatives. V. Formation Enthalpies of 2,3-Dimethylnaphthalene. Anales de Química, 75, 620-624.
[26] Stephenson, R.M. and Malanowski, S. (1987) Handbook of the Thermodynamics of Organic Compounds. Elsevier, New York.
http://dx.doi.org/10.1007/978-94-009-3173-2
[27] Lide, D.R. (2001) CRC Handbook of Chemistry and Physics. 84th Edition, CRC Press, Boca Raton.
[28] Baccanari, D.P., Novinski, J.A., Pan, Y.-C., Yevitz, M.M. and Swain, H.A. (1968) Heats of Sublimation and Vaporization at 25° of Long Chain Fatty Acids and Methyl Esters. Transactions of the Faraday Society, 64, 1201-1205.
http://dx.doi.org/10.1039/tf9686401201
[29] Welsh, W.J., Tong, W., Collantes, E.R., Chickos, J.S. and Gagarin, S.G. (1997) Enthalpies of Sublimation and Formation of Polycyclic Aromatic Hydrocarbons (PAHs) Derived from Comparative Molecular Field Analysis (CoMFA): Application of Moment of Inertia for Molecular Alignment. Thermochimica Acta, 290, 55-64.
http://dx.doi.org/10.1016/S0040-6031(96)03048-1
[30] Arshadi, M.R. (1974) Determination of Heats of Sublimation of Organic Compounds by a Mass Spectrometric-Knu- dsen Effusion Method. Journal of the Chemical Society, Faraday Transactions, 70, 1569-1571.
http://dx.doi.org/10.1039/f19747001569
[31] Colomina, M., Roux, M.V. and Turrion, C. (1974) Thermochemical Properties of Naphthalene Compounds. II. Enthalpies of Combustion and Formation of the 1- and 2-Naphthols. The Journal of Chemical Thermodynamics, 6, 571-576.
http://dx.doi.org/10.1016/0021-9614(74)90044-5
[32] Huang, C.-C., Tang, M., Tao, W.-H. and Chen, Y.-P. (2001) Calculation of the Solid Solubilities in Supercritical Carbon Dioxide Using a Modified Mixing Model. Fluid Phase Equilibria, 179, 67-84.
http://dx.doi.org/10.1016/S0378-3812(00)00483-0
[33] Balson, E.W. (1947) Studies in Vapor Pressure Measurement, Part III.—An Effusion Manometer Sensitive to 5 × 10-6 Millimeters of Mercury: Vapor Pressure of D.D.T. and Other Slightly Volatile Substances. Transactions of the Faraday Society, 43, 54-60.
http://dx.doi.org/10.1039/tf9474300054
[34] Oja, V. and Suuberg, E. M. (1998) Vapor Pressures and Enthalpies of Sublimation of Polycyclic Aromatic Hydrocarbons and Their Derivatives. Journal of Chemical & Engineering Data, 43, 486-492.
http://dx.doi.org/10.1021/je970222l
[35] Malaspina, L., Bardi, G. and Gigli, R. (1974) Simultaneous Determination by knudsen-Effusion Microcalorimetric Technique of the Vapor Pressure and Enthalpy of Vaporization of Pyrene and 1,3,5-Triphenylbenzene. The Journal of Chemical Thermodynamics, 4, 1053-1064.
http://dx.doi.org/10.1016/0021-9614(74)90067-6
[36] Tochigi, K., Iizumi, T., Sekikawa, H., Kurihara, K. and Kojima, K. (1998) High-Pressure Vapor-Liquid and Solid-Gas Equilibria Using a Peng-Robinson Group Contribution Method. Industrial & Engineering Chemistry Research, 37, 3731- 3740.
http://dx.doi.org/10.1021/ie970060m
[37] Chickos, J.S. and Acree Jr., W.E. (2002) Enthalpies of Sublimation of Organic and Organometallic Compounds.1910- 2001. Journal of Physical and Chemical Reference Data, 31, 537-698.
http://dx.doi.org/10.1063/1.1475333
[38] Nass, K., Lenoir, D. and Kettrup, A. (1995) Calculation of the Thermodynamic Properties of Polycyclic Aromatic Hydrocarbons by an Incremental Procedure. Angewandte Chemie International Edition in English, 34, 1735-1736.
http://dx.doi.org/10.1002/anie.199517351
[39] Hansen, B.N., Harvey, A.H., Coelho, J.A.P., Palavra, A.M.F. and Bruno, T.J. (2001) Solubility of Capsaicin and β- Carotene in Supercritical Carbon Dioxide and in Halocarbons. Journal of Chemical & Engineering Data, 46, 1054- 1058.
http://dx.doi.org/10.1021/je000255s