ACES  Vol.5 No.3 , July 2015
Solubility of Solids in Supercritical Fluids: The Mendez-Santiago Teja Model Revisited
ABSTRACT
For the development and enhancement of supercritical applications, it is crucial to know the solubility of the considered compound in the supercritical fluid (SCF) in order to determine the conditions to achieve the best outcome. Many models have been developed to calculate supercritical solubility behavior and most can be either a semi empirical relationship or based on an equation of state. The Mendez-Santiago and Teja (MST) model is one of the most semiempirical models used. In this work, a review of the (MST) model from an accuracy and ability viewpoint is accomplished to give concise discussion and so to the proposition of a modification.

Cite this paper
Nasri, L. and Bensetiti, Z. (2015) Solubility of Solids in Supercritical Fluids: The Mendez-Santiago Teja Model Revisited. Advances in Chemical Engineering and Science, 5, 413-423. doi: 10.4236/aces.2015.53042.
References
[1]   Coutsikos, P., Magoulas, K. and Kontogeorgis, G.M. (2003) Prediction of Solid-Gas Equilibria with the Peng-Robin- son Equation of State. The Journal of Supercritical Fluids, 25, 197-212.
http://dx.doi.org/10.1016/S0896-8446(02)00142-0

[2]   Cygnarowicz, M.L., Maxwell, R.J. and Seider, W.D. (1990) Equilibrium Solubilities of β-Carotene in Supercritical Carbon Dioxide. Fluid Phase Equilibria, 59, 57-71.
http://dx.doi.org/10.1016/0378-3812(90)85146-2

[3]   Ashour, I., Almehaideb, R., Fateen, S.-E. and Aly, G. (2000) Representation of Solid-Supercritical Fluid Phase Equilibria Using Cubic Equations of State. Fluid Phase Equilibria, 167, 41-61.
http://dx.doi.org/10.1016/S0378-3812(99)00314-3

[4]   Tabernero, A., del Valle, E.M.M. and Galán, Má. (2010) A Comparison between Semiempirical Equations to Predict the Solubility of Pharmaceutical Compounds in Supercritical Carbon Dioxide. The Journal of Supercritical Fluids, 52, 161-174.
http://dx.doi.org/10.1016/j.supflu.2010.01.009

[5]   Cortesi, A., Kikic, I., Alessi, P., Turtoi, G. and Garnier, S. (1999) Effect of Chemical Structure on the Solubility of Antioxidants in Supercritical Carbon Dioxide: Experimental Data and Correlation. The Journal of Supercritical Fluids, 4, 139-144.
http://dx.doi.org/10.1016/S0896-8446(98)00119-3

[6]   Garnier, S., Neau, E., Alessi, P., Cortesi, A. and Kikic, I. (1999) Modeling Solubility of Solids in Supercritical Fluids Using Fusion Properties. Fluid Phase Equilibria, 158-160, 491-500.
http://dx.doi.org/10.1016/S0378-3812(99)00151-X

[7]   Méndez-Santiago, J. and Teja, A.S. (1999) The Solubility of Solids in Supercritical Fluids. Fluid Phase Equilibria, 158- 160, 501-510.
http://dx.doi.org/10.1016/S0378-3812(99)00154-5

[8]   Harvey, A.H. (1990) Supercritical Solubility of Solids from Near-Critical Dilute-Mixture Theory. The Journal of Phy- sical Chemistry, 94, 8403-8406.
http://dx.doi.org/10.1021/j100385a009

[9]   Nasri, L., Bensaad, S. and Bensetiti, Z. (2013) Correlation and Prediction of the Solubility of Solid Solutes in Chemically Diverse Supercritical Fluids Based on the Expanded Liquid Theory. Advances in Chemical Engineering and Sci- ence, 3, 255-273.
http://dx.doi.org/10.4236/aces.2013.34033

[10]   Kumar, S.K. and Johnston, K.P. (1988) Modeling the Solubility of Solids in Supercritical Fluids with Density as the Independent Variable. The Journal of Supercritical Fluids, 1, 15-22.
http://dx.doi.org/10.1016/0896-8446(88)90005-8

[11]   Johanna, M.H. and Sengers, L. (1991) Solubility near the Solvent’s Critical Point. The Journal of Supercritical Fluids, 4, 215-222.
http://dx.doi.org/10.1016/0896-8446(91)90013-V

[12]   Sparks, D.L., Hernandez, R. and Estévez, L.A. (2008) Evaluation of Density-Based Models for the Solubility of Solids in Supercritical Carbon Dioxide and Formulation of a New Model. Chemical Engineering Science, 63, 4292-4301.
http://dx.doi.org/10.1016/j.ces.2008.05.031

[13]   Goldfarb, J.L. and Suuberg, E. M. (2008) Vapor Pressures and Enthalpies of Sublimation of Ten Polycyclic Aromatic Hydrocarbons Determined via the Knudsen Effusion Method. Journal of Chemical & Engineering Data, 53, 670-676.
http://dx.doi.org/10.1021/je7005133

[14]   Prausnitz, J.M., Lichtenthaler, R.N., de Azevedo, E.G. (1999) Molecular Thermodynamics of Fluid-Phase Equilibria. 3rd Edition, Prentice Hall Inc., Engelwood Cliffs.

[15]   Schmitt, W.J. and Reid, R.C. (1986) Solubility of Monofunctional Organic Solids in Chemically Diverse Supercritical Fluids. Journal of Chemical & Engineering Data, 31, 204-212.
http://dx.doi.org/10.1021/je00044a021

[16]   McEachern, D.M., Sandoval, O. and Iniguez, J.C. (1975) Vapor Pressures, Derived Enthalpies of Sublimation, Enthalpies of Fusion, and Resonance Energies of Acridine and Phenazine, The Journal of Chemical Thermodynamics, 7, 299- 306.
http://dx.doi.org/10.1016/0021-9614(75)90069-5

[17]   Delle, S.A. (1997) The Vapor Pressure of Environmentally Significant Organic Chemicals: A Review of Methods and Data at Ambient Temperature. Journal of Physical and Chemical Reference Data, 26, 157-193.
http://dx.doi.org/10.1063/1.556006

[18]   Hansen, P.C. and Eckert, C.A. (1986) An Improved Transpiration Method for the Measurement of Very Low Vapor Pressure. Journal of Chemical & Engineering Data, 31, 1-3.
http://dx.doi.org/10.1021/je00043a001

[19]   Oliveira, J.A.S.A., Monte, M.J.S., Notario, R. and Ribeiro da Silva, M.D.M.C. (2014) Experimental and Computational Study of the Thermodynamic Properties. The Journal of Chemical Thermodynamics, 76, 56-63.
http://dx.doi.org/10.1016/j.jct.2014.03.005

[20]   Huang, Z.S., Kawi, S. and Chiew, Y.C. (2004) Application of the Perturbed Lennard-Jones Chain Equation of State to Solute Solubility in Supercritical Carbon Dioxide. Fluid Phase Equilibria, 216, 111-122.
http://dx.doi.org/10.1016/j.fluid.2003.10.004

[21]   Bardi, G., Malaspina, L. and Piacenti, V. (1973) Vapor Pressure and Sublimation Enthalpy of Anthraquinone and of 1,5- and 1,8-Dihydroxyanthraquinone. Journal of Chemical & Engineering Data, 18, 126-130.
http://dx.doi.org/10.1021/je60057a024

[22]   Sasse, K., N’guimbi, J., Jose, J. and Merlin, J.C. (1989) Tension de vapeur d’hydrocarbures polyaromatiques dans le domaine 10-3-10 Torr. Thermochimica Acta, 146, 53-61.
http://dx.doi.org/10.1016/0040-6031(89)87075-3

[23]   Da Silva, M.A.V. and Ribeiro, Monte, M.J.S. (1990) The Construction, Testing and Use of a New Knudsen Effusion Apparatus. Thermochimica Acta, 171, 169-183.
http://dx.doi.org/10.1016/0040-6031(90)87017-7

[24]   Eckert, Z. (1983) Correlation and Prediction of Solid-Supercritical Fluid Phase Equilibria. Industrial and Engineering Chemistry Process Design and Development, 22, 582-588.
http://dx.doi.org/10.1021/i200023a005

[25]   Colomina, M., Jimenez, P., Roux, M.V. and Turrion, C. (1979) Thermochemical Properties of Naphthalene Derivatives. V. Formation Enthalpies of 2,3-Dimethylnaphthalene. Anales de Química, 75, 620-624.

[26]   Stephenson, R.M. and Malanowski, S. (1987) Handbook of the Thermodynamics of Organic Compounds. Elsevier, New York.
http://dx.doi.org/10.1007/978-94-009-3173-2

[27]   Lide, D.R. (2001) CRC Handbook of Chemistry and Physics. 84th Edition, CRC Press, Boca Raton.

[28]   Baccanari, D.P., Novinski, J.A., Pan, Y.-C., Yevitz, M.M. and Swain, H.A. (1968) Heats of Sublimation and Vaporization at 25° of Long Chain Fatty Acids and Methyl Esters. Transactions of the Faraday Society, 64, 1201-1205.
http://dx.doi.org/10.1039/tf9686401201

[29]   Welsh, W.J., Tong, W., Collantes, E.R., Chickos, J.S. and Gagarin, S.G. (1997) Enthalpies of Sublimation and Formation of Polycyclic Aromatic Hydrocarbons (PAHs) Derived from Comparative Molecular Field Analysis (CoMFA): Application of Moment of Inertia for Molecular Alignment. Thermochimica Acta, 290, 55-64.
http://dx.doi.org/10.1016/S0040-6031(96)03048-1

[30]   Arshadi, M.R. (1974) Determination of Heats of Sublimation of Organic Compounds by a Mass Spectrometric-Knu- dsen Effusion Method. Journal of the Chemical Society, Faraday Transactions, 70, 1569-1571.
http://dx.doi.org/10.1039/f19747001569

[31]   Colomina, M., Roux, M.V. and Turrion, C. (1974) Thermochemical Properties of Naphthalene Compounds. II. Enthalpies of Combustion and Formation of the 1- and 2-Naphthols. The Journal of Chemical Thermodynamics, 6, 571-576.
http://dx.doi.org/10.1016/0021-9614(74)90044-5

[32]   Huang, C.-C., Tang, M., Tao, W.-H. and Chen, Y.-P. (2001) Calculation of the Solid Solubilities in Supercritical Carbon Dioxide Using a Modified Mixing Model. Fluid Phase Equilibria, 179, 67-84.
http://dx.doi.org/10.1016/S0378-3812(00)00483-0

[33]   Balson, E.W. (1947) Studies in Vapor Pressure Measurement, Part III.—An Effusion Manometer Sensitive to 5 × 10-6 Millimeters of Mercury: Vapor Pressure of D.D.T. and Other Slightly Volatile Substances. Transactions of the Faraday Society, 43, 54-60.
http://dx.doi.org/10.1039/tf9474300054

[34]   Oja, V. and Suuberg, E. M. (1998) Vapor Pressures and Enthalpies of Sublimation of Polycyclic Aromatic Hydrocarbons and Their Derivatives. Journal of Chemical & Engineering Data, 43, 486-492.
http://dx.doi.org/10.1021/je970222l

[35]   Malaspina, L., Bardi, G. and Gigli, R. (1974) Simultaneous Determination by knudsen-Effusion Microcalorimetric Technique of the Vapor Pressure and Enthalpy of Vaporization of Pyrene and 1,3,5-Triphenylbenzene. The Journal of Chemical Thermodynamics, 4, 1053-1064.
http://dx.doi.org/10.1016/0021-9614(74)90067-6

[36]   Tochigi, K., Iizumi, T., Sekikawa, H., Kurihara, K. and Kojima, K. (1998) High-Pressure Vapor-Liquid and Solid-Gas Equilibria Using a Peng-Robinson Group Contribution Method. Industrial & Engineering Chemistry Research, 37, 3731- 3740.
http://dx.doi.org/10.1021/ie970060m

[37]   Chickos, J.S. and Acree Jr., W.E. (2002) Enthalpies of Sublimation of Organic and Organometallic Compounds.1910- 2001. Journal of Physical and Chemical Reference Data, 31, 537-698.
http://dx.doi.org/10.1063/1.1475333

[38]   Nass, K., Lenoir, D. and Kettrup, A. (1995) Calculation of the Thermodynamic Properties of Polycyclic Aromatic Hydrocarbons by an Incremental Procedure. Angewandte Chemie International Edition in English, 34, 1735-1736.
http://dx.doi.org/10.1002/anie.199517351

[39]   Hansen, B.N., Harvey, A.H., Coelho, J.A.P., Palavra, A.M.F. and Bruno, T.J. (2001) Solubility of Capsaicin and β- Carotene in Supercritical Carbon Dioxide and in Halocarbons. Journal of Chemical & Engineering Data, 46, 1054- 1058.
http://dx.doi.org/10.1021/je000255s

 
 
Top