[1] Dastidar, P. (2008) Supramolecular Gelling Agents: Can They Be Designed? Chemical Society Reviews, 37, 2699-2715.
http://dx.doi.org/10.1039/b807346e
[2] van Esch, J.H. (2009) We Can Design Molecular Gelators, But Do We Understand Them? Langmuir, 25, 8392-8394.
http://dx.doi.org/10.1021/la901720a
[3] Svobodová, H., Noponen, V., Kolehmainen, K. and Sievnen, E. (2012) Recent Advances in Steroidal Supramolecular Gels. RSC Advances, 2, 4985-5007.
http://dx.doi.org/10.1039/c2ra01343f
[4] Buerklea, L.E. and Rowan, S.J. (2012) Supramolecular Gels Formed From Multi-Component Low Molecular Weight Species. Chemical Society Reviews, 41, 6089-6102.
http://dx.doi.org/10.1039/c2cs35106d
[5] Babu, S.S., Praveen, V.K. and Ajayaghosh, A. (2014) Functional Π-Gelators and Their Applications. Chemical Reviews, 114, 1973-2129.
http://dx.doi.org/10.1021/cr400195e
[6] Hofmann, A.F. and Small, D.M. (1967) Detergent Properties of Bile Salts: Correlation with Physiological Function. Annual Review of Medicine, 18, 333-376.
http://dx.doi.org/10.1146/annurev.me.18.020167.002001
[7] Mukhopadhyay, S. and Maitra, U. (2004) Chemistry and Biology of Bile Acids. Current Science, 87, 1666-1683.
[8] Terech, P. and Talmon, Y. (2002) Aqueous Suspensions of Steroid Nanotubules: Structural and Rheological Characterizations. Langmuir, 18, 7240-7244.
http://dx.doi.org/10.1021/la025574r
[9] Terech, P., Sangeetha, N.M., Demé, B. and Maitra, U. (2005) Self-Assembled Networks of Ribbons in Molecular Hydrogels of Cationic Deoxycholic Acid Analogues. Journal Physics Chemistry B, 109, 12270-12276.
http://dx.doi.org/10.1021/jp050666l
[10] Qiao, Y., Lin, Y., Yang, Z., Chen, H., Zhang, S., Yan, Y. and Huang, J. (2010) Unique Temperature-Dependent Supramolecular Self-Assembly: From Hierarchical 1D Nanostructures to Super Hydrogel. Journal Physics Chemistry B, 114, 11725-11730.
http://dx.doi.org/10.1021/jp1047369
[11] Mangisi, N., Leggio, C., Jover, A.J., Meijide, F., Pavel, N.V., Tellini, V.H.S., Tato, J.V., Agostino, R.G. and Galantini, L. (2010) Catanionic Tubules with Tunable Charge. Angewandte Chemie International Edition, 49, 6604-6607.
http://dx.doi.org/10.1002/anie.201000951
[12] Pal, A., Basit, H., Sen, S., Aswal, V.K. and Bhattacharya, S.J. (2009) Structure and Properties of Two Component Hydrogels Comprising Lithocholic Acid and Organic Amines. Journal of Materials Chemistry, 19, 4325-4334.
http://dx.doi.org/10.1039/b903407b
[13] Zhang, X., Zou, J., Tamhane, K., Kobzeff, F. and Fang, J.Y. (2010) Self-Assembly of pH-Switchable Spiral Tubes: Supramolecular Chemical Springs. Small, 6, 217-220.
http://dx.doi.org/10.1002/smll.200901067
[14] Tamhane, K., Zhang, X., Zou, J. and Fang, J.Y. (2010) Assembly and Disassembly of Tubular Spherulites. Soft Matter, 6, 1224-1228.
http://dx.doi.org/10.1039/b915183d
[15] Meijide, F., Antelo, A., Alcalde, M.A., Jover, A., Galantini, L., Pavel, N.V. and Tato, J.V. (2010) Supramolecular Structures Generated by Ap-Tert-Butylphenylamide Derivative of Deoxycholic Acid. From Planar Sheets to Tubular Structures through Helical Ribbons. Langmuir, 26, 7768-7773.
http://dx.doi.org/10.1021/la904548k
[16] Liu, C., Cui, J., Song, A. and Hao, J. (2011) A Bile Acid-Induced Aggregation Transition and Rheological Properties in Its Mixtures with Alkyltrimethylammonium Hydroxide. Soft Matter, 7, 8952-8960.
http://dx.doi.org/10.1039/c1sm05635b
[17] Zhang, X., Bera, T., Liang, W. and Fang J.Y. (2011) Longitudinal Zipping/Unzipping of Self-Assembled Organic Tubes. Journal Physics Chemistry B, 115, 14445-14459.
http://dx.doi.org/10.1021/jp2064276
[18] Terech, P., Velu, S.K.P., Pernot, P. and Wiegart, L. (2012) Salt Effects in The Formation of Self-Assembled Lithocholate Helical Ribbons and Tubes. Journal Physics Chemistry B, 116, 11344-11355.
http://dx.doi.org/10.1021/jp305365m
[19] Chakrabarty, A., Maitra, U. and Das, A.D. (2012) Metal Cholate Hydrogels: Versatile Supramolecular Systems for Nanoparticle Embedded Soft Hybrid Materials. Journal of Materials Chemistry, 22, 18268-18274.
http://dx.doi.org/10.1039/c2jm34016j
[20] di Gregorio, M.C., .Pavel, M.C., Miragaya, J., Jover, A., Meijide, F., Tato, J.V., Tellini, V.H.S. and Galantini, L. (2013) Catanionic Gels Based on Cholic Acid Derivatives. Langmuir, 29, 12342-12351.
http://dx.doi.org/10.1021/la402602d
[21] Wang, H., Xu, W., Song, S., Feng, L., Song, A. and Hao, J. (2014) Hydrogels Facilitated by Monovalent Cations and Their Use as Efficient Dye Adsorbents. Journal Physics Chemistry B, 118, 4693-4701.
http://dx.doi.org/10.1021/jp500113h
[22] Sun, X., Xin, X., Tang, N., Guo, L., Wang, L. and Xu, G. (2014) Manipulation of the Gel Behavior of Biological Surfactant Sodium Deoxycholate by Amino Acids. Journal Physics Chemistry B, 4, 118, 824-832.
http://dx.doi.org/10.1021/jp409626s
[23] Rich, A. and Blow, D.B. (1958) Formation of a Helical Steroid Complex. Nature, 182, 423-427.
http://dx.doi.org/10.1038/182423a0
[24] Blow, D.B. and Rich, A. (1960) Studies on the Formation of Helical Deoxycholate Complexes1, 2. Journal of American Chemistry Society, 82, 3566-3571.
http://dx.doi.org/10.1021/ja01499a023
[25] Jover, A., Meijide, F., Nunez, E.R. and Tato, J.V. (1996) Unusual Pyrene Excimer Formation during Sodium Deoxycholate Gelation. Langmuir, 12, 1789-1793.
http://dx.doi.org/10.1021/la9506335
[26] Ritger, P.L. and Peppas, N.A. (1987) A Simple Equation for Description of Solute Release I. Fickian and Non-Fickian Release from Non-Swellable Devices in the Form of Slabs, Spheres, Cylinders or Discs. Journal of Controlled Release, 5, 23-36.
http://dx.doi.org/10.1016/0168-3659(87)90034-4
[27] Mason, T.G. and Weitz, D.A. (1995) Optical Measurements of Frequency-Dependent Linear Viscoelastic Moduli of Complex Fluids. Physical Review Letters, 74, 1250-1253.
http://dx.doi.org/10.1103/PhysRevLett.74.1250
[28] Gardel, M.L., Valentine, M.T. and Weitz, D.A. (2003) Microrheology. In: Breuer, K., Ed., Microscale Diagnostic Techniques, Springer-Verlag, New York.
[29] Popescu, G. and Dogariu, A. (2001) Dynamic Light Scattering in Localized Coherence Volumes. Optics Letters, 26, 551-553.
http://dx.doi.org/10.1364/OL.26.000551
[30] Popescu, G., Dogariu, A. and Rajagopalan, R. (2002) Spatially Resolved Microrheology Using Localized Coherence Volumes. Physical Review E, 65, Article ID: 041504.
http://dx.doi.org/10.1103/PhysRevE.65.041504
[31] Sohn, I.S., Rajagopalan, R. and Dogariu, A.C. (2004) Spatially Resolved Microrheology through a Liquid/Liquid Interface. Journal of Colloid. Interface Science, 269, 503-513.
http://dx.doi.org/10.1016/S0021-9797(03)00728-8
[32] Berne, B.J. and Pecora, R. (2000) Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics. Courier Dover Publications, Mineola.
[33] Jvan Zanten, H. and Rufener, K.P. (2000) Brownian Motion in a Single Relaxation Time Maxwell Fluid. Physical Review E, 62, 5389-5396.
http://dx.doi.org/10.1103/PhysRevE.62.5389
[34] Bellour, M., Skouri, M., Munch, J.P. and Hébraud, P. (2002) Brownian Motion of Particles Embedded in a Solution of Giant Micelles. European Physical Journal E, 8, 431-436.
http://dx.doi.org/10.1140/epje/i2002-10026-0
[35] Galvan-Miyoshi, J. Delgado, J. and Castillo, R. (2008) Diffusing Wave Spectroscopy in Maxwellian Fluids. European Physical Journal E, 26, 369-377.
http://dx.doi.org/10.1140/epje/i2007-10335-8
[36] Mason, T.G. (2000) Estimating the Viscoelastic Moduli of Complex Fluids Using the Generalized Stokes-Einstein Equation. Rheologica Acta, 39, 371-378.
http://dx.doi.org/10.1007/s003970000094
[37] Mason, T.G., Gang, H. and Weitz, D.A. (1997) Diffusing-Wave-Spectroscopy Measurements of Viscoelasticity of Complex Fluids. Journal of the Optical Society of American, 14, 139-149.
http://dx.doi.org/10.1364/JOSAA.14.000139
[38] Palmer, A., Mason, T.G., Xu, J., Kuo, S.C. and Wirtz, D. (1999) Diffusing Wave Spectroscopy Microrheology of Actin Filament Networks. Biophysical Journal, 76, 1063-1071.
http://dx.doi.org/10.1016/S0006-3495(99)77271-1
[39] Narita, T., Knaebel, A., Munch, J.P. and Candau, S.J. (2001) Microrheology of Poly(vinyl alcohol) Aqueous Solutions and Chemically Cross-Linked Gels. Macromolecules, 34, 8224-8231.
http://dx.doi.org/10.1021/ma010890i
[40] Xu, J., Tseng, Y., Carriere, C.J. and Wirtz, D. (2002) Microheterogeneity and Microrheology of Wheat Gliadin Suspensions Studied by Multiple-Particle Tracking. Biomacromolecules, 3, 92-99.
http://dx.doi.org/10.1021/bm015586b
[41] Cardinaux, F., Cipelletti, L., Scheffold, F. and Schurtenberger, P. (2002) Microrheology of Giant-Micelle Solutions. Europhysics Letters, 57, 738-744.
http://dx.doi.org/10.1209/epl/i2002-00525-0
[42] Shikata, T., Hirata, H. and Kotaka, T. (1987) Micelle Formation of Detergent Molecules in Aqueous Media: Wiscoelastic Properties of Aqueous Cetyltrimethylammonium Bromide Solutions. Langmuir, 3, 1081-1086.
http://dx.doi.org/10.1021/la00078a035
[43] Berret, J.F., Appell, A. and Porte, G. (1993) Linear Rheology of Entangled Wormlike Micelles. Langmuir, 9, 2851- 2854.
http://dx.doi.org/10.1021/la00035a021
[44] Edwards, S.F. and Doi, M. (1986) The Theory of Polymer Dynamics. Clarendon, Oxford.
[45] Granek, R. and Cates, M.E. (1992) Stress Relaxation in Living Polymers: Results from a Poisson Renewal Model. Journal of Chemical Physics, 96, 4758-4767.
http://dx.doi.org/10.1063/1.462787
[46] Sarmiento-Gomez, E., Santamaria-Holek, I. and Castillo, R. (2014) Mean-Square Displacement of Particles in Slightly Interconnected Polymer Networks. Journal Physics Chemistry B, 118, 1146-1158.