The Identification of Frequency Hopping Signal Using Compressive Sensing

References

[1] AYDIN L, POLYDOROS A. Hop-timing estimation for FH signals using a coarsely channelized receiver. IEEE Trans. Communication, Apr. 1996, 44(4): 516-526.

[2]
ZHANG X, DU X, ZHU L. Time frequency analysis of frequency hopping signals based on Gabor spectrum method. Journal of Data Acquisition & Processing, Jun. 2007, 22(2): 123-135.

[3]
HIPPENSTIEL R, KHALIL N, FARGUES M. The use of wavelets to identify hopped signals. In 1997 Fortieth Asilomar Conf. Signals, System & Computer, 1997, 1: 946-949.

[4]
FAN H, GUO Y, XU Y. A novel algorithm of blind detection of frequency hopping signal based on second-order cyclostationarity. Proc. 2008 Image and Signal Processing Congr., 2008, 5: 399-402.

[5]
HAUPT J, NOWAK R, YEH G. Compressive sampling for signal classification. In 2006 Asilomar Conf. on Signals, System & Computer, Oct. 2006, 1430-1434.

[6]
HAUPT J, NOWAK R. Compressive sampling for signal detection. Conf. Rec. 2007 IEEE Int. Conf. Acoustics Speech and Signal Processing, 2007, 3: 1509-1512.

[7]
DUARTE M F, DAVENPORT M A, WAKIN M B. Multiscale random projection for compressive classification. Conf. Rec. 2007 IEEE Int. Conf. Image Processing, 2007, 6: 161-164.

[8] DUARTE M F, DAVENPORT M A, WAKIN M B, BRANIUK R G. Sparse signal detection from incoherent projection. Conf. Rec. 2006 IEEE Int. Conf. Acoustics Speech and Signal Proc-essing, 2006, 3: 305-308.

[9] BRANIUK R. Compressed sensing. IEEE Signal Processing Magazine, Jul. 2007, 24(4): 118-121.

[10]
DONOHO D. Compressed sensing. IEEE Trans. Inform. Theory, Apr. 2006, 52(4): 1289-1306.

[11]
CANDES E, ROMBERG J, TAO T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inform. Theory, Feb. 2006, 52(2): 489-509.

[12]
DONOHO D, TANNER J. Sparse nonnegative solutions of underdetermined linear equations by linear programming. Proc. National Academy Science, 2005, 102(27): 9446-9451.

[13]
TTOPP J A. Greed is good: Algorithmic results for sparse approximation. IEEE Trans. Inform. Theory, Oct. 2004, 50(10): 2231-2242.

[14]
HAUPT J, NOWAK R. Signal reconstruction from noisy random projection. IEEE Trans. Inform. Theory, Sep. 2006, 52(9): 4036-4048.

[15]
CHEN S, DONOHO D, SAUNDERS M. Atomic decomposition by basis pursuit. SIAM J. Sci. Comput., 1998, 20: 33-61.

[16]
LASKA J, KIROLOS S, MASSOUD Y, BARANIUK R. Random sampling for analog-to-informaion conversion of wideband signals. IEEE Dallas/CAS Workshop on Design, Application, Integration and Software, Oct. 2006, 119-122.