JMP  Vol.2 No.7 , July 2011
Detailing Coherent, Minimum Uncertainty States of Gravitons, as Semi Classical Components of Gravity Waves, and How Squeezed States Affect Upper Limits To Graviton Mass
Abstract: We present what is relevant to squeezed states of initial space time and how that affects both the composition of relic GW, and also gravitons. A side issue to consider is if gravitons can be configured as semi classical "particles", which is akin to the Pilot model of Quantum Mechanics as embedded in a larger non linear "deterministic" background.
Cite this paper: nullA. Beckwith, "Detailing Coherent, Minimum Uncertainty States of Gravitons, as Semi Classical Components of Gravity Waves, and How Squeezed States Affect Upper Limits To Graviton Mass," Journal of Modern Physics, Vol. 2 No. 7, 2011, pp. 730-751. doi: 10.4236/jmp.2011.27086.

[1]   M. Y. Kuchiev, “Can Gravity Appear Due to Polarization of Instantons in SO(4) Gauge Theory?” Classical and Quantum Gravity, Vol. 15, No. 7, 1998, pp. 1895-1913. doi:10.1088/0264-9381/15/7/008

[2]   I. Andri?, L. Jonke and D. Jurman, “Solitons and Giants in Matrix Models,” Progress of Physics, Vol. 56, No. 4-5, 2008, pp. 324-329.

[3]   D. Perkins, “Particle Astrophysics,” Oxford University press, Oxford, 2003.

[4]   L. Glinka, “Preliminaries in Many-Particle Quantum Gravity. Einstein-FriedmannSpacetime,”;

[5]   L. Glinka, “Quantum Information from Graviton-Matter Gas,” Symmetry, Integrability and Geometry: Methods and Applications, Vol. 3, No. 087, 2007, pp. 1-13.

[6]   Y. J. Ng, “Spacetime Foam: From Entropy and Holography to Infinite Statistics and Nonlocality,” Entropy, Vol. 10, No. 4, 2008, pp. 441-461. doi:10.3390/e10040441

[7]   M. Asakawa, T. Hatsuda and Y. Nakahara, “Maximum entropy analysis of the spectral functions in lattice QCD,” Progress in Particle and Nuclear Physics, Vol. 46, No. 2, 2001, pp. 459-508. doi:10.1016/S0146-6410(01)00150-8

[8]   M. Asakawa, S. A. Bass and B. Müller, “Anomalous Viscosity of an Expanding Quark-Gluon Plasma,” Physical Review Letters, Vol. 96, No. 25, 2006, Article ID: 252301. doi:10.1103/PhysRevLett.96.252301

[9]   M. Asakawa, T. Hatsuda and Y. Nakahara, Prog. Part. Nucl. Phys. 46, 459(2001)

[10]   G. Torrieri and I. Mushuntin, “Instability of Boost-Invariant Hydrodynamics with a QCD Inspired Bulk Viscosity,” Physical Review C, Vol. 78, No. 2, 2008, Article ID: 021901.doi:10.1103/PhysRevC.78.021901

[11]   N. Dadhich, “Derivation of the Raychaudhuri Equation,” General Relativity and Quantum Cosmology, 2005.

[12]   J. Natário, “Relativity and Singularities—A Short Introduction for Mathematicians,” March 2006.

[13]   A. Beckwith, “Relic High Frequency Gravitational Wavesfrom the Big Bang, and How to Detect them,” AIP Conference Proceedings, Vol. 1103, 2009, pp. 571-581. doi:10.1063/1.3115567

[14]   S. Mathur and B. Chowdhury, “Fractional Brane States in the Early Universe,” Classical and Quantum Gravity, Vol. 24, No. 10, 2007, pp. 2689-2720. doi:10.1088/0264-9381/24/10/014

[15]   A. Beckwith, “Instanton Formation of Vacuum Energy via the Reissner-Nordstrom Geometry of a Wormhole Bridge between a Prior to Our Present Universe,” October 2007. arXiv:0710.3788

[16]   S. Weinberg, “Cosmology,” Oxford University Press, Oxford, 2008

[17]   G. Lifschytz, “Black Hole Thermalization Rate from Brane Antibrane Model,” 2004.

[18]   A. Beckwith, F. Y. Li, et al. “Is Octonionic Quantum Gravity Relevant near the Planck Scale? If Gravity Waves Are Generated by Changes in the Geometry of the Early Universe, How Can We Measure them?” 2011.

[19]   K. Becker, M. Becker and J. Schwarz, “String Thetheory and M theory, a Modern Introduction,” Cambridge University Press, Cambridge, 2007

[20]   S. Carroll, “An Introduction to General Relativity Space Time and Geometry,” Addison Wesley Publishing House, San Francisco, 2004

[21]   C. Foias, O. Manley, et al., Comptes Rendus de l’Académie des Sciences—Series I—Mathematics, Vol. 333, 499, 2001.

[22]   R. Rosa and R. M. S. Rosa, “Turbulence Theories,” In: J.-P. Franchioise, G. Naber and T.-T. Sheung, Eds., Encyclopedia of Mathematical Physics, Vol. 2, 2006, pp. 253-261.

[23]   A. Beckwith, “A New Soliton-Anti Soliton Pair Creation Rate Expression Improving Upon Zener Curve Fitting for I-E Plots,” Modern Physics Letters B, Vol. 20, No. 5, 2006, pp. 849-861. doi:10.1142/S0217984906011219

[24]   A. Beckwith, “Classical and Quantum Models of Density Wave Transport, a comparative study,” PhD Dissertation, University of Houston, December 2001

[25]   T. Kahniashvili, “Relic Gravitational Waves as a Test of the Early Universe,” 2007. arXiv:0705.1733[astro-ph]

[26]   L. Grishkuk, “Discovering Relic Gravitational Waves in Cosmic Microwave Background Radiation,” General Relativity and John Archibald Wheeler, Vol. 367, Part 3, 2008, pp. 151-199.

[27]   E. Kolb and S. Turner, “The Early Universe,” Westview Press, Chicago, 1994

[28]   M. Peskin and D. Schroeder, “An Introduction to Quantum Field Theory,” Westview Press, Chicago, 1995.

[29]   M. Maggiore, “Gravitational Waves, Volume 1: Theory and Experiment,” Oxford University Press, Oxford, 2008.

[30]   A. Avessian, “Plancks Constant Evolution as a Cosmo- logical Evolution Test for the Early Universe,” Gravitation and Cosmology, Vol. 15, No. 1, 2009, pp. 10-12. doi:10.1134/S0202289309010034

[31]   C. Hogan, “Holographic Discreteness of Inflationary Pe turbations,” 2002. arXIV astro-ph/0201020 v 2

[32]   J. Camp and N. Cornish, “Gravitational Wave Astronomy,” In: B. Kayser, B. Holstein and A. Jawahery, Eds., Annual Review of Nuclear and Particle Science, Vol. 54, Menlo Park, 2004, pp. 525-577.

[33]   F. Li, R. Baker, et al. “Perturbative Photon Fluxes Generated by High-Frequency Gravitational Waves and Their Physical Effects,” European Physical Journal C, Vol. 56, No. 3, 2008, pp. 407-423. doi:10.1140/epjc/s10052-008-0656-9

[34]   H. B. J. Koers and P. Tinyakov, “Testing Large-Scale (An)isotropy of Ultra-High Energy Cosmic Rays,” Journal of Cosmology and Astroparticle Physics, Vol. 2009, No. 4, 2009. [arXiv:0812.0860 [astro-ph]].

[35]   W. Honig, “A Minimum Photon ‘Rest Mass’—Using Planck’s Constant and Discontinuous Electromagnetic Waves,” Foundations of Physics, Vol. 4, No. 3, 1974, pp. 367-380. doi:10.1007/BF00708542

[36]   S. Weinberg, “Gravitation,” Freeman, San Francisco, 1973.

[37]   R. Glauber, “Coherent and Incoherent States of the Radiation Field”, Physical Review, Vol. 131, No. 6, 1963, pp. 2766-2788. doi:10.1103/PhysRev.131.2766

[38]   M. Gasperini and G. Veneziano, Modern Physics Letters A, Vol. 8, 3701, 1993.

[39]   K. Kieffer, “Quantum gravity,” International Series of Monographs on Physics, Oxford Science Pulications, Oxford University Press, Oxford, 2007. doi:10.1093/acprof:oso/9780199212521.001.0001

[40]   T. Mohaupt. “Introduction to String Theory,” 2003. (hep- th_0207249)(78s).pdf

[41]   L. H. Ford, “Gravitons and Lightcone Fluctuations,” Physical Review D, Vol. 54, No. 4, 1996, pp. 2640-2646. doi:10.1103/PhysRevD.54.2640

[42]   F. Li, N. Yang, et al., “Signal Photon Flux and Background Noise in a Coupling Electromagnetic Detecting System for High Frequency Gravitational Waves,” Physical Review D, Vol. 80, No. 6, 2009, Article ID: 064013. doi:10.1103/PhysRevD.80.064013

[43]   K. K. Venkatartnam and P. K. Suresh, “Density Fluctuations in the Oscillatory Phase of Nonclassical Inflaton in FRW Universe,” International Journal of Modern Physics D, Vol. 17, No. 11, 2008, pp. 1991-2005. doi:10.1142/S0218271808013662

[44]   L. Grishchuk and Y. Sidorov, Classical and Quantum Gravity, Vol. 6, 1989, pp. L161-L165. doi:10.1088/0264-9381/6/9/002

[45]   L Grishchuk, “Quantum Effects in Cosmology,” Classical and Quantum Gravity, Vol. 10, 1993, pp. 2449-2478. doi:10.1088/0264-9381/10/12/006

[46]   J. Polchinski, “String Theory: An introduction to the Bo-Sonic String,” Cambridge University Press, Cambridge, 1999.

[47]   R. Dick, “Standard Cosmology in the DGP Brane Model,” Acta Physica Polonica B, Vol. 32, No. 11, 2001, pp. 3669-3682.

[48]   Berkestein, 2004.

[49]   C. Rovelli, “Graviton Propagator from Background Indpendent Quantum Gravity,” Physical Review Letters, Vol. 97, No. 15, 2006, Article ID: 151301. doi:10.1103/PhysRevLett.97.151301

[50]   L. Motl, 2007.

[51]   J. Mielchrek, “Tensor Power Spectrum with Holonomy Corrections in LQC,” Physical Review D, Vol. 79, 2009, Article ID: 123520.

[52]   D.-W. Chiu and F. Li, “Loop Quantum Cosmology with Higher Order Holonomy Corrections,” Physical Review D, Vol. 80, No. 4, 2009, Article ID: 043512.

[53]   A. Ashtekar, 2006. solvaynet.pdf

[54]   M. Bojowald, “Comment on ‘Quantum bounce and cos- mic recall’,” Physical Review Letters, Vol. 101, No. 20, 2008, Article ID: 209001.

[55]   M. Bojowald, “Quantum Nature of Cosmological Bounces,” General Relativity and Gravitation, Vol. 40, No. 12, 2008, pp. 2659-2683. doi:10.1007/s10714-008-0645-1

[56]   M. Bojowald, “Quantum nature of cosmological bounces “General Relativity and Gravitation, pp 2659-2683, Vol 40, Number 12, Dec, 2008;

[57]   L. Crowell, “Quantum Fluctuations of Space Time,” World Scientific Series in Contemporary Chemical Phyics, World Scientific, Singapore, Vol. 25, 2005.

[58]   P. Martin-Moruno and P. F. Gonzalez-Diaz, “Thermal radiation from Lorentzian traversable wormholes,” Physical Review D, Vol. 80, No. 16, 2009, Article ID: 024007.

[59]   M. Cavaglià, “Quantum Electromagnetic Wormholes and Geometrical Description of the Electric Charge,” Physical Review D, Vol. 50, No. 8, 1994, pp. 5087-5092.

[60]   L. J. Garay, “Quantum State of Wormholes and Path Integral,” Physical Review D, Vol. 44, No. 4, 1991, pp. 1059-1066. doi:10.1103/PhysRevD.44.1059

[61]   A. Linde, “The New Inflationary Universe Scenario,” In: C. Gibbons, S. Hawking and S. Siklos, Eds., The Very Early Universe, Cambridge University Press, Cambridge, 1982, pp. 205-249.

[62]   J. Lehners, P. McFadden, N. Turok and P. Steinhardt, “Generating Ekpyrotic Curvature Perturbations Before the Big Bang,” Physical Review D, Vol. 76, No. 10, 2007, Article ID: 103501.doi:10.1103/PhysRevD.76.103501

[63]   S. Gutt, S. Waldmann, “Deformations of the Poisson Bracket on a Sympletic Manifold,” In: J. P. Frnachoise, G. L Naber and S. Tsuou, Eds., Encyclopedia of Mathematical Physics, Elsevier, Oxford, Vol. 2, 2006, p. 24. doi:10.1016/B0-12-512666-2/00366-7

[64]   A. Beckwith, “Relic High Frequency Gravitational Waves from the Big Bang, and How to Detect them,” AIPConf.Proc.1103:571-581, 2009, (13)

[65]   G. Fontana, “Gravitational Wave Propulsion,” In: M. El-Genk, Ed., Proceedings of (STAIF-05), AIP Conference Proceedings, Vol. 746, Melville, 2005. doi:10.1063/1.1867262

[66]   D. Park, “Radiations from a Spinning Rod,” Physical Review, Vol. 99, No. 4, 1955, pp. 1324-1325. doi:10.1103/PhysRev.99.1324

[67]   M. Giovannini, “A primer on the Physics of the Cosmic Microwave Background,” World Press Science, Singapore, 2008.

[68]   A. D. Linde, “Inflationary Cosmology,” In: M. Lemione, J. Martin and P. Peters, Eds., Lecture Notes in Physics 738, Inflationary Cosmology, Springer Verlag, Berlin, 2008, pp. 1-54.

[69]   L. Kofman, “Preheating after Inflation,” In: M. Lemoine, J. Martin and P. Peter, Eds., Lecture Notes in Physics 738, Inflationary Cosmology, Springer Verlag, Berlin, 2008, pp. 50-79.

[70]   C. Kiefer, D. Polariski and A. Starobinsky, “Entropy of Gravitons Produced in the Early Universe,” Physical Review D, Vol. 62, No. 4, 2000, Article ID: 043518.

[71]   C. M. Will, “The Confrontation between General Relativity and Experiment,” 2001.

[72]   M. Visser, “Mass for the Graviton,” General Relativity Gravity, Vol. 30, No. 12, 1998, pp. 1717-1728. doi:10.1023/A:1026611026766

[73]   A. Beckwith, “Energy Content of Graviton as a Way to Quantify both Entropy and Information Generation in the Early Universe,” Journal of Modern Physics, Vol. 2, 2011, pp. 58-61. doi:10.4236/jmp.2011.22010

[74]   P. Chen, “Resonant Phton-Graviton Conversion in EM Fields: From Earth to Heaven,” 1994.

[75]   T. Rothman and S. Boughn, “Can Gravitons be Detected?” Foundations of Physics, Vol. 36, No. 12, 2006, pp. 1801-1825. doi:10.1007/s10701-006-9081-9

[76]   D. Samtleben, S. Staggs and B. Witnstein, “The Cosmic Microwave Background for Pedestrians, a review for Particle and Nuclear Physicists,” Annual Review of Nuclear and Particle Science, Vol. 57, 2007, pp. 245-283. doi:10.1146/annurev.nucl.54.070103.181232

[77]   R. Durrer, “Cosmological Perturbation Theory,” In: E. Papantonopoulous, Ed., Physics of the Early Universe, Lecture Notes in Physics 653, Springer-Verlag, Berlin, 2004.

[78]   S. Capozziello, A. Feoli, et al., “Thin Shell Quantization in Weyl Spacetime,” Physics Letters A, Vol. 273, No. 1, 2000, pp. 25-30. doi:10.1016/S0375-9601(00)00478-3