Analysis of an Il’in Scheme for a System of Singularly Perturbed Convection-Diffusion Equations

References

[1] T. Linss and N. Madden, “Accurate Solution of a System of Coupled Singularly Perturbed Reaction-Diffusion Equations,” Computing, Vol. 73, No. 2, 2004, pp. 121-133. doi:10.1007/s00607-004-0065-3

[2] N. Madden and M. Stynes, “A Uniformly Convergent Numerical Method for a Coupled System of Two Singularly Perturbed Linear Reaction-Diffusion Problems,” IMA Journal of Numerical Analysis, Vol. 23, No. 4, 2003, pp. 627-644. doi:10.1093/imanum/23.4.627

[3] J. L. Gracia and F. J. Lisbona, “A Uniformly Convergent Scheme for a System of Reaction-Diffusion Equations,” Journal of Computational and Applied Mathematics, Vol. 206, No. 1, 2007, pp. 1-16.
doi:10.1016/j.cam.2006.06.005

[4] S. Bellew and E. O’Riordan, “A Parameter-Robust Numerical Method for a System of Two Singularly Perturbed Convection-Diffusion Equations,” Applied Numerical Mathematics, Vol. 51, No. 2-3, 2004, pp. 171-186. doi:10.1016/j.apnum.2004.05.006

[5] Z. Cen, “Parameter-Uniform Finite Difference Scheme for a System of Coupled Singularly Perturbed Convection-Diffusion Equations,” International Journal of Com- puter Mathematics, Vol. 82, No. 2, 2005, pp. 177-192.
doi:10.1080/0020716042000301798

[6] G. M. Amiraliyev, “The Convergence of a Finite Difference Method on Layer-Adapted Mesh for a Singularly Perturbed System,” Applied Mathematics and Computation, Vol. 162 No. 3, 2005, pp. 1023-1024.
doi:10.1016/j.amc.2004.01.015

[7] V. B. Andreev and N. Kopteva, “On the Convergence, Uniform with Respect to a Small Parameter of Monotone Three-Point Finite-Difference Approximations,” Journal of Difference Equations, Vol. 34, 1998, pp. 921-929.

[8] T. Lin?, “Analysis of an Upwind Finite-Difference Scheme for a System of Coupled Singularly Perturbed Convection-Diffusion Equations,” Computing, Vol. 79, No. 1, 2007, pp. 23-32.
doi:10.1007/s00607-006-0215-x

[9] H. G. Roos, “A Note on the Conditioning of Upwind Schemes on Shishkin Meshes,” IMA Journal of Numerical Analysis, Vol. 16, No. 4, 1996, pp. 529-538.
doi:10.1093/imanum/16.4.529

[10] A. M. Il’in, “A Difference Scheme for a Differential Equation with a Small Parameter Affecting the Highest Derivative,” in Russian, Matematicheskie Zametki, Vol. 6, 1969, pp. 237-248.

[11] V. B. Andreev, “The Green Function and A Priori Estimates of Solution of Monotone Three Point Singularly Perturbed Finite-Difference Schemes,” Differrence Equations, Vol. 37, No. 7, 2001, pp. 923-933.
doi:10.1023/A:1011949419389

[12] R. B. Kellogg and A. Tsan, “Analysis of Some Difference Approximations for a Singular Perturbation Problem without Turning Points,” Mathematics of Computation, Vol. 32, 1978, pp. 1025-1039.
doi:10.1090/S0025-5718-1978-0483484-9

[13] O. Axelsson and L.Kolotilina, “Monotonicity and Discretization Error Estimates,” SIAM Journal on Numerical Analysis, Vol. 27, No. 6, 1990, pp. 1591-1611.
doi:10.1090/S0025-5718-1978-0483484-9

[14] H. G. Roos, M. Stynes and L. Tobiska, “Robust Methods for Singularly Perturbed Differential Equations,” 2nd Edition, Springer Series in Computational Mathematics, Springer, Berlin, 2008.

[15] T. Lin?, “Analysis of a System of Singularly Perturbed Covection-Diffusion Equations with Strong Coupling,” SIAM Journal on Numerical Analysis, Vol. 47, No. 3, 2009, pp. 1847-1862.doi:10.1137/070683970