[1] Latimer, P., Bannister, T.T. and Rabinowitch, E. (1956) Quantum Yields of Fluorescence of Plant Pigments. Science, 124, 585-586.
http://dx.doi.org/10.1126/science.124.3222.585
[2] Baker, N.R. (2008) Chlorophyll Fluorescence: A Probe of Photosynthesis in Vivo. Annual Review of Plant Biology, 59, 89-113.
http://dx.doi.org/10.1146/annurev.arplant.59.032607.092759
[3] Lazár, D. (2015) Parameters of Photosynthetic Energy Partitioning. Journal of Plant Physiology, 175, 131-147.
http://dx.doi.org/10.1016/j.jplph.2014.10.021
[4] Mishra, A., Heyer, A.G. and Mishra, K.B. (2014) Chlorophyll Fluorescence Emission Can Screen Cold Tolerance of Cold Acclimated Arabidopsis thaliana Accessions. Plant Methods, 10, 38.
http://dx.doi.org/10.1186/1746-4811-10-38
[5] Rousseau, C., Belin, E., Bove, E., Rousseau, D., Fabre, F., Berruyer, R., Guillaumès, J., Manceau, C., Jacques, M.A. and Boureau, T. (2013) High Throughput Quantitative Phenotyping of Plant Resistance Using Chlorophyll Fluorescence Image Analysis. Plant Methods, 9, 17.
http://dx.doi.org/10.1186/1746-4811-9-17
[6] Thalhammer, A., Hincha, D.K. and Zuther, E. (2014) Measuring Freezing Tolerance: Electrolyte Leakage and Chlorophyll Fluorescence Assays. Methods in Molecular Biology, 1166, 15-24.
http://dx.doi.org/10.1007/978-1-4939-0844-8_3
[7] Schmidt, S.B., Pedas, P., Laursen, K.H., Schjoerring, J.K. and Husted, S. (2013) Latent Manganese Deficiency in Barley Can Be Diagnosed and Remediated on the Basis of Chlorophyll a Fluorescence Measurements. Plant and Soil, 372, 417-429.
http://dx.doi.org/10.1007/s11104-013-1702-4
[8] Kasajima, I., Ebana, K., Yamamoto, T., Takahara, K., Yano, M., Kawai-Yamada, M. and Uchimiya, H. (2011) Molecular Distinction in Genetic Regulation of Nonphotochemical Quenching in Rice. Proceedings of the National Academy of Sciences of the United States of America, 108, 13835-13840.
http://dx.doi.org/10.1073/pnas.1104809108
[9] Kramer, D.M., Johnson, G., Kiirats, O. and Edwards, G.E. (2004) New Fluorescence Parameters for the Determination of QA Redox State and Excitation Energy Fluxes. Photosynthesis Research, 79, 209-218.
http://dx.doi.org/10.1023/B:PRES.0000015391.99477.0d
[10] Kasajima, I., Takahara, K., Kawai-Yamada, M. and Uchimiya, H. (2009) Estimation of the Relative Sizes of Rate Constants for Chlorophyll De-Excitation Processes through Comparison on Inverse Fluorescence Intensities. Plant and Cell Physiology, 50, 1600-1616.
http://dx.doi.org/10.1093/pcp/pcp102
[11] Walters, R.G. and Horton, P. (1991) Resolution of Components of Non-Photochemical Chlorophyll Fluorescence Quenching in Barley Leaves. Photosynthesis Research, 27, 121-133.
http://dx.doi.org/10.1007/BF00033251
[12] Cazzaniga, S., Dall’Osto, L., Kong, S.G., Wada, M. and Bassi, R. (2013) Interaction between Avoidance of Photon Absorption Excess Energy Dissipation and Zeaxanthin Synthesis against Photooxidative Stress in Arabidopsis. The Plant Journal, 76, 568-579.
http://dx.doi.org/10.1111/tpj.12314
[13] Li, X.P., Björkman, O., Shih, C., Grossman, A.R., Rosenquist, M., Jansson, S. and Niyogi, K.K. (2000) A Pigment-Binding Protein Essential for Regulation of Photosynthetic Light Harvesting. Nature, 403, 391-395.
http://dx.doi.org/10.1038/35000131
[14] Niyogi, K.K., Grossman, A.R. and Björkman, O. (1998) Arabidopsis Mutants Define a Central Role for the Xanthophyll Cycle in the Regulation of Photosynthetic Energy Conversion. Plant Cell, 10, 1121-1134.
http://dx.doi.org/10.1105/tpc.10.7.1121
[15] Brugnoli, E. and Björkman, O. (1992) Chloroplast Movements in Leaves: Influence on Chlorophyll Fluorescence and Measurements of Light-Induced Absorbance Changes Related to ΔpH and Zeaxanthin Formation. Photosynthesis Research, 32, 23-35.
http://dx.doi.org/10.1007/BF00028795
[16] Kagawa, T., Sakai, T., Suetsugu, N., Oikawa, K., Ishiguro, S., Kato, T., Tabata, S., Okada, K. and Wada, M. (2001) Arabidopsis NPL1: A Phototropin Homolog Controlling the Chloroplast High-Light Avoidance Response. Science, 291, 2138-2141.
http://dx.doi.org/10.1126/science.291.5511.2138
[17] Kasahara, M., Kagawa, T., Oikawa, K., Suetsugu, N., Miyao, M. and Wada, M. (2002) Chloroplast Avoidance Movement Reduces Photodamage in Plants. Nature, 420, 829-832.
http://dx.doi.org/10.1038/nature01213
[18] Oikawa, K., Kasahara, M., Kiyosue, T., Kagawa, T., Suetsugu, N., Takahashi, F., Kanegae, T., Niwa, Y., Kadota, A. and Wada, M. (2003) Chloroplast Unusual Positioning Is Essential for Proper Chloroplast Positioning. The Plant Journal, 15, 2805-2815.
http://dx.doi.org/10.1105/tpc.016428
[19] Dall’Osto, L., Cazzaniga, S., Wada, M. and Bassi, R. (2014) On the Origin of a Slowly Reversible Fluorescence Decay Component in the Arabidopsis npq4 Mutant. Philosophical Transactions of the Royal Society B, 369, 20130221.
http://dx.doi.org/10.1098/rstb.2013.0221
[20] Kozuka, T., Kong, S.G., Doi, M., Shimazaki, K. and Nagatani, A. (2011) Tissue-Autonomous Promotion of Palisade Cell Development by Phototropin 2 in Arabidopsis. The Plant Journal, 23, 3684-3695.
http://dx.doi.org/10.1105/tpc.111.085852
[21] Inoue, Y. and Shibata, K. (1974) Comparative Examination of Terrestrial Plant Leaves in Terms of Light-Induced Absorption Changes Due to Chloroplast Rearrangements. Plant and Cell Physiology, 15, 717-721.
[22] Miyake, C., Amako, K., Shiraishi, N. and Sugimoto, T. (2009) Acclimation of Tobacco Leaves to High Light Intensity Drives the Plastoquinone Oxidation System (POS)—Relationship among the Fraction of Open PSII Centers, Non-Photochemical Quenching (NPQ) of Chl Fluorescence and the Maximum Quantum Yield of PSII in the Dark. Plant and Cell Physiology, 50, 730-743.
http://dx.doi.org/10.1093/pcp/pcp032
[23] Azzabi, G., Pinnola, A., Betterle, N., Bassi, R. and Alboresi, A. (2012) Enhancement of Non-Photochemical Quenching in the Bryophyte Physcomitrella patens during Acclimation to Salt and Osmotic Stress. Plant and Cell Physiology, 53, 1815-1825.
[24] Porcar-Castell, A., Juurola, E., Nikinmaa, E., Berninger, F., Ensminger, I. and Hari, P. (2008) Seasonal Acclimation of Photosystem II in Pinus sylvestris. I. Estimating the Rate Constants of Sustained Thermal Energy Dissipation and Photochemistry. Tree Physiology, 28, 1475-1482.
http://dx.doi.org/10.1093/treephys/28.10.1475
[25] Porcar-Castell, A. (2011) A High-Resolution Portrait of the Annual Dynamics of Photochemical and Non-Photo chemical Quenching in Needles of Pinus sylvestris. Physiologia Plantarum, 143, 139-153.
http://dx.doi.org/10.1111/j.1399-3054.2011.01488.x