Back
 OJPC  Vol.5 No.3 , August 2015
A Method for Calculating the Heats of Formation of Medium-Sized and Large-Sized Molecules
Abstract: A calculation method for heats of formation (HOF, referred to as △Hf) based on the density functional theory (DFT) is presented in this work. Similar to Gaussian-3 theory, the atomic scheme is applied to calculate the heats of formation of the molecules. In this method, we have modified the formula for calculation of Gaussian-3 theory in several ways, including the correction for diffuse functions and the correction for higher polarization functions. These corrections are found to be significant. The average absolute deviation from experiment for the 164 calculated heats of formation is about 1.9 kcal·mol?1, while average absolute deviation from G3MP2 for the 149 (among the 164 molecules, 15 large-sized molecules can not be calculated at the G3MP2 level) calculated heats of formation is only about 1.9 kcal·mol?1. It indicates that the present method can be applied to predict the heats of formation of medium-sized and large-sized molecules, while the heats of formation of these molecules using Gaussian-3 theory are much difficult, even impossible, to calculate. That is, this method provides a choice in the calculation of △Hf for medium-sized and large-sized molecules.
Cite this paper: He, B. , Zhou, H. , Yang, F. and Li, W. (2015) A Method for Calculating the Heats of Formation of Medium-Sized and Large-Sized Molecules. Open Journal of Physical Chemistry, 5, 71-86. doi: 10.4236/ojpc.2015.53008.
References

[1]   Curtiss, L.A., Raghavachari, K., Trucks, G.W. and Pople, J.A. (1991) Gaussian-2 Theory for Molecular Energies of First- and Second-Row Compounds. Journal of Chemical Physics, 94, 7221-7230.
http://dx.doi.org/10.1063/1.460205

[2]   Curtiss, L.A. and Raghavachari, K. (1995) In: Langhoff, S.R., Ed., Quantum Mechanical Electronic Structure Calculations with Chemical Accuracy, Kluwer Academic, Netherlands, 139.

[3]   Pople, J.A., Head-Gordon, M., Fox, D.J., Raghavachari, K. and Curtiss, L.A. (1989) Gaussian-1 Theory: A General Procedure for Prediction of Molecular Energies. Journal of Chemical Physics, 90, 5622-5629.
http://dx.doi.org/10.1063/1.456415

[4]   Curtiss, L.A., Jones, C., Trucks, G.W., Raghavachari, K. and Pople, J.A. (1990) Gaussian-1 Theory of Molecular Energies for Second-Row Compounds. Journal of Chemical Physics, 93, 2537-2545.
http://dx.doi.org/10.1063/1.458892

[5]   Curtiss, L.A., Raghavachari, K., Redfern, P.C. and Pople, J.A. (1997) Assessment of Gaussian-2 and Density Functional Theories for the Computation of Enthalpies of Formation. Journal of Chemical Physics, 105, 1063-1079.
http://dx.doi.org/10.1063/1.473182

[6]   Curtiss, L.A., Redfern, P.C., Raghavachari, K. and Pople, J.A. (1998) Assessment of Gaussian-2 and Density Functional Theories for the Computation of Ionization Potentials and Electron Affinities. Journal of Chemical Physics, 109, 42-55.
http://dx.doi.org/10.1063/1.476538

[7]   Lau, C.-K., Li, W.-K., Wang, X., Tian, A.M. and Wong, N.B. (2002) A Gaussian-3 Study of and Isomers. Journal of Molecular Structure (THEOCHEM), 617, 121-131.
http://dx.doi.org/10.1016/S0166-1280(02)00411-6

[8]   Curtiss, L.A., Redfern, P.C. and Raghavachari, K. (2011) Gn Theory. Wireless Communications & Mobile Computing, 1, 810-825.

[9]   Curtiss, L.A., Raghavachari, K., Redfern, P.C., Rassolov, V. and Pople, J.A. (1998) Gaussian-3 (G3) Theory for Molecules Containing First and Second-Row Atoms. Journal of Physical Chemistry, 109, 7764-7775.
http://dx.doi.org/10.1063/1.477422

[10]   Curtiss, L.A., Redfern, P.C., Raghavachari, K., Rassolov, V. and Pople, J.A. (1999) Gaussian-3 Theory Using Reduced Moller-Plesset Order. Journal of Chemical Physics, 110, 4703-4709.
http://dx.doi.org/10.1063/1.478385

[11]   Haworth, N.L. and Bacskay, G.B. (2002) Heats of Formation of Phosphorus Compounds Determined by Current Methods of Computational Quantum chemistry. The Journal of Chemical Physics, 117, 11175-11187.
http://dx.doi.org/10.1063/1.1521760

[12]   Gong, X.D., Zhang, J. and Xiao, H.M. (1999) Studies on the Synthesis of (2S,3R)-3-Hydroxy-3-Methylproline via C-2-N Bond Formation. Proceedings of the 26th International Pyrotechnics Seminar, 136.

[13]   Chen, Z.X., Xiao, J.M., Xiao, H.M. and Chiu, Y.N. (1999) Studies on Heats of Formation for Tetrazole Derivatives with Density Functional Theory B3LYP Method. The Journal of Chemical Physics, 103, 8062-8066.
http://dx.doi.org/10.1021/jp9903209

[14]   Hehre, W.J. (1995) Practical Strategies for Electronic Structure Calculation. Wavefunction, Inc., Irvine, 102-134.

[15]   Xu, X.J., Xiao, H.M., Ma, X.F. and Ju, X.H. (2006) Looking for High-Energy Density Compounds among Hexaazaadamantane Derivatives with Bond CN, Bond NC, and Bond ONO2 Groups. International Journal of Quantum Chemistry, 106, 1561-1568.
http://dx.doi.org/10.1002/qua.20909

[16]   Wang, G.X., Gong, X.D. and Xiao, H.M. (2009) Theoretical Investigation on Density, Detonation Properties, and Pyrolysis Mechanism of Nitro Derivatives of Benzene and Aminobenzenes. International Journal of Quantum Chemistry, 109, 1522-1530.
http://dx.doi.org/10.1002/qua.21967

[17]   Ruzsinszky, A., van Alsenoy, C. and Csonka, G.I. (2002) Optimal Selection of Partial Charge Calculation Method for Rapid Estimation of Enthalpies of Formation from Hartree-Fock Total Energy. The Journal of Physical Chemistry, 106, 12139-12150.
http://dx.doi.org/10.1021/jp026913s

[18]   Duan, X.M., Song, G.L., Li, Z.H., Wang, X.J., Chen, G.H. and Fan, K.N. (2004) Accurate Prediction of Heat of Formation by Combining Hartree-Fock/Density Functional Theory Calculation with Linear Regression Correction Approach. The Journal of Chemical Physics, 121, 7086-7095.
http://dx.doi.org/10.1063/1.1786582

[19]   Jursic, B.S. (2003) Density Functional Calculation of the Heats of Formation for Various Aromatic Nitro Compounds. Journal of Molecular Structure (THEOCHEM), 634, 215-224.
http://dx.doi.org/10.1016/S0166-1280(03)00345-2

[20]   Chen, P.C., Chieh, Y.C. and Tzeng, S.C. (2000) Computing Heats of Formation for Cubane and Tetrahrane with Density Functional Theory and Complete Basis Set ab Initio Methods. Journal of Molecular Structure (THEOCHEM), 499, 137-140.
http://dx.doi.org/10.1016/S0166-1280(99)00293-6

[21]   Dunning, T.H. (1989) Gaussian Basis Sets for Use in Correlated Molecular Calculations. I. The Atoms Boron through Neon and Hydrogen. The Journal of Chemical Physics, 90, 1007-1023.
http://dx.doi.org/10.1063/1.456153

[22]   Peterson, K.A., Woon, D.E. and Dunning Jr., T.H. (1994) Benchmark Calculations with Correlated Molecular Wave Functions. IV. The Classical Barrier Height of the H + H2 → H2 + H Reaction. The Journal of Chemical Physics, 100, 7410-7415.
http://dx.doi.org/10.1063/1.466884

[23]   Wilson, A., van Mourik, T. and Dunning Jr., T.H. (1997) Gaussian Basis Sets for Use in Correlated Molecular Calculations. VI Sextuple Zeta Correlation Consistent Basis Sets for Boron through Neon. Journal of Molecular Structure (THEOCHEM), 388, 339-349.
http://dx.doi.org/10.1016/S0166-1280(96)80048-0

[24]   Davidson, E.R. (1996) Comment on “Comment on Dunning’s Correlation-Consistent Basis Sets”. Chemical Physics Letters, 220, 514-518.
http://dx.doi.org/10.1016/0009-2614(96)00917-7

[25]   Berry, R.J., Burgess Jr., D.R.F., Nyden, M.R., Zacharian, M.R., Melius, C.F. and Schwarz, M. (1996) Halon Thermochemistry: Calculated Enthalpies of Formation of Chlorofluoromethanes. The Journal of Physical Chemistry, 100, 7405-7410.

[26]   Raghavachari, K., Stefanov, B.B. and Curtiss, L.A. (1997) Accurate Thermochemistry for Larger Molecules: Gaussian-2 Theory with Bond Separation Energies. The Journal of Chemical Physics, 106, 6764-6767.
http://dx.doi.org/10.1063/1.473659

[27]   Baboul, A.G., Curtiss, L.A., Redfern, P.C. and Raghavachari, K. (1999) Gaussian-3 Theory Using Density Functional Geometries and Zero-Point Energies. The Journal of Chemical Physics, 110, 7650-7657.
http://dx.doi.org/10.1063/1.478676

[28]   Zhou, H.W., Wong, N.B., Zhou, G. and Tian, A.M. (2006) Theoretical Study on “Multilayer” Nitrogen Cages. The Journal of Physical Chemistry A, 110, 3845-3852.
http://dx.doi.org/10.1021/jp056435w

[29]   Zhou, H.W., Wong, N.B., Zhou, G. and Tian, A.M. (2006) What Makes the Cylinder-Shaped N72 Cage Stable? The Journal of Physical Chemistry A, 110, 7441-7446.
http://dx.doi.org/10.1021/jp062214u

[30]   Lias, S.G., Bartmess, J.E., Liebman, J.F., Holmes, J.L., Levin, R.D. and Mallard, W.G. (1988) Gas-Phase Ion and Neutral Thermochemistry. Journal of Physical and Chemical Reference Data, 17.

[31]   Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery Jr., J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J.V., Cioslowski, J. and Fox, D.J. (2009) Gaussian 09. Revision C.01. Gaussian, Inc., Wallingford.

 
 
Top