[1] Schnebelen, M., Ricaud, M., Jakob, A., Sy, D., Plasari, E. and Muhr, H. (2015) Determination of Crystallization Kinetics and Size Distribution Parameters of Agglomerated Calcium Carbonate Nanoparticles during the Carbonation of a Suspension of Lime. Crystal Structure Theory and Applications, 4, 16-27.
[2] Liao, P. and Hulburt, H. (1976) Agglomeration Process in Suspension Crystallization. Proceedings of 69th Annual Meeting American Institute of Chemical Engineers.
[3] Tavare, N., Shah, M. and Garside, J. (1985) Crystallization and Agglomeration Kinetics of Nickel Ammonium-Sulfate in MSMPR Crystallizer. Powder Technology, 44, 13-18.
http://dx.doi.org/10.1016/0032-5910(85)85015-4
[4] Hounslow, M. (1990) Nucleation, Growth, and Aggregation Rates from Steady-State Experimental-Data. AIChE Jour- nal, 36, 1748-1752.
http://dx.doi.org/10.1002/aic.690361117
[5] Hostomsky, J. and Jones, A. (1991) Calcium-Carbonate Crystallization, Agglomeration and Form during Continuous Precipitation from Solution. Journal of Physics D—Applied Physics, 24, 165-170.
http://dx.doi.org/10.1088/0022-3727/24/2/012
[6] Rohani, S. and Chen, M. (1993) Aggregation and Precipitation Kinetics of Canola Protein by Isoelectric Precipitation. Canadian Journal of Chemical Engineering, 71, 689-698.
http://dx.doi.org/10.1002/cjce.5450710506
[7] Wojcik, J.A. and Jones, A.G. (1997) Experimental Investigation into Dynamics and Stability of Continuous MSMPR Agglomerative Precipitation of CaCO3 Crystals. Chemical Engineering Research & Design, 75, 113-118.
http://dx.doi.org/10.1205/026387697523516
[8] Li, T.S., Livk, I. and Ilievski, D. (2001) The Influence of Crystallizer Configuration on the Accuracy and Precision of Gibbsite Crystallization Kinetics Estimates. Chemical Engineering Science, 56, 2511-2519.
http://dx.doi.org/10.1016/S0009-2509(00)00451-6
[9] Georgieva, P., Meireles, M.J. and de Azevedo, S.F. (2003) Knowledge-Based Hybrid Modelling of a Batch Crystallization When Accounting for Nucleation, Growth and Agglomeration Phenomena. Chemical Engineering Science, 58, 3699-3713.
http://dx.doi.org/10.1016/S0009-2509(03)00260-4
[10] Zauner, R. and Jones, A.G. (2000) Determination of Nucleation, Growth, Agglomeration and Disruption Kinetics from Experimental Precipitation Data: The Calcium Oxalate System. Chemical Engineering Science, 55, 4219-4232.
http://dx.doi.org/10.1016/S0009-2509(00)00059-2
[11] Lallemand, S., Bertrand, M. and Plasari, E. (2012) Physical Simulation of Precipitation of Radioactive Element Oxalates by Using the Harmless Neodymium Oxalate for Studying the Agglomeration Phenomena. Journal of Crystal Growth, 342, 42-49.
http://dx.doi.org/10.1016/j.jcrysgro.2011.01.079
[12] Ilievski, D. and Livk, I. (2006) An Agglomeration Efficiency Model for Gibbsite Precipitation in a Turbulently Stirred Vessel. Chemical Engineering Science, 61, 2010-2022.
http://dx.doi.org/10.1016/j.ces.2005.10.051
[13] Lindenberg, C., Scholl, J., Vicum, L., Mazotti, M. and Brozio, J. (2008) L-Glutamic Acid Precipitation: Agglomeration Effects. Crystal Growth and Design, 8, 224-237.
http://dx.doi.org/10.1021/cg070161f
[14] Hounslow, M.J., Ryall, R.L. and Marshall, V.R. (1988) A Discretized Population Balance for Nucleation, Growth, and Aggregation. AIChE Journal, 34, 1821-1832.
http://dx.doi.org/10.1002/aic.690341108
[15] Ilievski, D. and White, E. (1994) Agglomeration during Precipitation: Agglomeration Mechanism Identification for Al(OH)3 Crystals in Stirred Caustic Aluminate Solutions. Chemical Engineering Science, 49, 3227-3239.
http://dx.doi.org/10.1016/0009-2509(94)E0060-4
[16] Bramley, A.S., Hounslow, M.J. and Ryall, R.L. (1996) Aggregation during Precipitation from Solution: A Method for Extracting Rates from Experimental Data. Journal of Colloid and Interface Science, 183, 155-165.
http://dx.doi.org/10.1006/jcis.1996.0530
[17] Collier, A.P. and Hounslow, M.J. (1999) Growth and Aggregation Rates for Calcite and Calcium Oxalate Monohydrate. AIChE Journal, 45, 2298-2305.
http://dx.doi.org/10.1002/aic.690451105
[18] Tourbin, M. and Frances, C. (2008) Experimental Characterization and Population Balance Modelling of the Dense Silica Suspensions Aggregation Process. Chemical Engineering Science, 63, 5239-5251.
http://dx.doi.org/10.1016/j.ces.2008.06.028
[19] Lemanowicz, M., Al-Rashed, M.H., Gierczycki, A.T. and Kocurek, J. (2009) Application of the QMOM in Research on the Behavior of Solid-Liquid Suspensions. Chemical and Biochemical Engineering Quarterly, 23, 143-151.
[20] Smoluchowski, M. (1917) Mathematical Theory of the Kinetics of the Coagulation of Colloidal Solutions. Zeitschrift für Physikalische Chemie, 19, 129-135.
[21] Mumtaz, H.S., Hounslow, M.J., Seaton, N.A. and Paterson, W.R. (1997) Orthokinetic Aggregation during Precipitation. A Computational Model for Calcium Oxalate Monohydrate. Chemical Engineering Research and Design, 75, 152-159.
[22] Hounslow, M., Mumtaz, H., Collier, A., Barrick, J. and Bramley, A. (2001) A Micro-Mechanical Model for the Rate of Aggregation during Precipitation from Solution. Chemical Engineering Science, 56, 2543-2552.
http://dx.doi.org/10.1016/S0009-2509(00)00436-X
[23] Hollander, E.D., Derksen, J.J., Bruinsma, O.S.L., van den Akker, H.E.A. and van Rosmalen, G.M. (2001) A Numerical Study on the Coupling of Hydrodynamics and Orthokinetic Agglomeration. Chemical Engineering Science, 56, 2531- 2541.
http://dx.doi.org/10.1016/S0009-2509(00)00435-8
[24] Livk, I. and Ilievski, D. (2007) A Macroscopic Agglomeration Kernel Model for Gibbsite Precipitation in Turbulent and Laminar Flows. Chemical Engineering Science, 62, 3787-3797.
http://dx.doi.org/10.1016/j.ces.2007.03.030
[25] Schaer, E., Ravetti, R. and Plasari, E. (2001) Study of Silica Particles Aggregation in a Batch Agitated Vessel. Chemical Engineering and Processing, 40, 277-293.
http://dx.doi.org/10.1016/s0255-2701(00)00124-0
[26] Salvatori, F., Muhr, H. and Plasari, E. (2005) A New Solution for Closure Problem in Crystallization Modeling Using Moments Method. Powder Technology, 157, 27-32.
http://dx.doi.org/10.1016/j.powtec.2005.05.008