JWARP  Vol.7 No.11 , July 2015
Fluoride in Tunisian Drinking Tap Water
Abstract: This paper presents a fluoride health risk characterization approach to identify the hyper-sensitive population of adverse effect like tooth decay, dental fluorosis and skeletal fluorosis. In this context, a sampling campaign has been done over 100 Tunisian water consumption points (tap). Laboratory analysis results show that the quality of drinking water is affected by high fluoride concentration level exceeding 2 mg·L-1. Over these samples, 7% of them present non-compliant with the Tunisian national standard (NT09.14) and the international guidelines (World Health Organization recommendations, WHO). The overtake cases are located essentially in southern Tunisian areas, i.e. Medenine, Gabes, Gafsa and Tataouine. One can highlight that groundwater, in these southern Tunisian areas, are naturally rich of fluoride. This is because of the aquifers geological and fossil nature. However, commonly northern and central Tunisian areas are characterized by low fluoride concentration level below 0.1 mg·L-1. These undertaken cases don’t meet the water quality requirement defined by WHO.
Cite this paper: Guissouma, W. and Tarhouni, J. (2015) Fluoride in Tunisian Drinking Tap Water. Journal of Water Resource and Protection, 7, 860-870. doi: 10.4236/jwarp.2015.711070.

[1]   WHO (2011) Guidelines for Drinking-Water Quality. 4th Edition, World Health Organization, Geneva.

[2]   Mazet, P., Anne, C., Jean-luc, S., Monique, O. and Claudine, D. (2002) Les eaux souterraines riches en fluor dans le monde, Université des Sciences et Technologies Montpellier II DEA Sciences de l’eau dans l’environnement continental.

[3]   InVS (2007) Estimation de l’impact sanitaire d’une pollution environnementale et évaluation quantitative des risques sanitaires.

[4]   Dhar, V. and Bhatnagar, M. (2009) Physiology and Toxicity of Fluoride. Indian Journal of Dental Research, 20, 350-355.

[5]   Warren, J.J., Levy, S.M. and Broffitt, B. (2009) Considerations on Optimal Fluoride Intake Using Dental Fluorosis and Dental Caries Outcomes—A Longitudinal Study. Journal of Public Health Dentistry, 69, 111-115.

[6]   Verkerk, R.H. (2010) The Paradox of Overlapping Micronutrient Risks and Benefits Obligates Risk/Benefit Analysis. Toxicology, 278, 27-38.

[7]   National Research Council (2006) Fluoride in Drinking Water: A Scientific Review of EPA’s Standards. National Academies Press, Washington DC, 530.

[8]   Barbier, O., Arreola-Mendoza, L. and Del Razo, L.M. (2010) Molecular Mechanisms of Fluoride Toxicity. Chemico-Biological Interactions, 2, 319-333.

[9]   Mellberg, J.R. and Ripa, L.W. (1983) Fluorides in Preventive Dentistry—Theory and Clinical Applications. Quintessence Publishing Co, Chicago, 81-102.

[10]   Anses (2013) évaluation des risques liés aux résidus de pesticides dans l’eau de distribution Contribution à l’exposition alimentaire totale, Rapport d’étude scientifique.

[11]   WHO (2003) Rapport sur la santé dans le monde—Façonner l’avenir.

[12]   Heath Canada (1997) Documentation pour la qualité de l’eau potable au Canada-Documentation à l’appui-Le fluorure.

[13]   US EPA (2003) United States Environmental Protection Agency EPA: Supplemental Guidance for Assessing Cancer Susceptibility from Early-Life Exposure to Carcinogens, EPA/630/R-03/003.

[14]   CSHPF (1995) Avis sur les limites de sécurité dans les consommations alimentaires des vitamines et de certains minéraux.

[15]   Parent-Massin, D. (2002) évaluation des risques toxicologiques et nutritionnels liés à l'utilisation des additifs et auxiliaires de fabrication. In: Additifs et auxiliaires de fabrication dans les industries agroalimentaires, Tec & Doc, Paris, 746 p.

[16]   NT09.14 (2013) Norme Tunisienne relative à la qualité des eaux destinées à la consommation humaine.

[17]   SONEDE (2014) Plan schématique simplifié du réseau d’alimentation en eau potable: Localité Gabes.

[18]   Afsset (2010) Valeurs toxicologiques de référence (VTR) rapport Guide d’élaboration de VTR.