JBNB  Vol.6 No.3 , July 2015
Nano-Coupling of Cephalosporin Antibiotics with Fe3O4 Nanoparticles: Trojan Horse Approach in Antimicrobial Chemotherapy of Infections Caused by Klebsiella spp.
Abstract: In the present study we had an aim to develop the methods of functionalizing the surface of magnetite nanoparticles with cefotaxime and ceftriaxone antibiotics. The quantitative analysis of the nanostructured cephalosporins was determined by Atom Absorbance Spectroscopy (AAS) and based on the Lambert-Beer law. The engineered nanostructures were tested on gram-negative microorganisms Klebsiella spp., of Enterobacteriaceae, and gram-positive bacteria Staphylococcus aureus, each having multi-drug resistance properties.
Cite this paper: Hasanova, U. , Ramazanov, M. , Maharramov, A. , Eyvazova, Q. , Agamaliyev, Z. , Parfyonova, Y. , Hajiyeva, S. , Hajiyeva, F. and Veliyeva, S. (2015) Nano-Coupling of Cephalosporin Antibiotics with Fe3O4 Nanoparticles: Trojan Horse Approach in Antimicrobial Chemotherapy of Infections Caused by Klebsiella spp.. Journal of Biomaterials and Nanobiotechnology, 6, 225-235. doi: 10.4236/jbnb.2015.63021.

[1]   Cornelissen, C.N., Fisher, B.D. and Richard, A. (2007) Harvey Lippincott’s Illustrated Reviews: Microbiology. 3rd Edition, Lippincot Williams and Wilkins, Philadelphia, 111-129.

[2]   Swartz, M.N. (1994) Hospital-Acquired Infections: Diseases with Increasingly Limited Therapies. Proceedings of the National Academy of Sciences of the United States of America, 91, 2420-2427.

[3]   Neu, H.C. (1992) The Crisis in Antibiotic Resistance. Science, 257, 1064-1073.

[4]   Murray, B.E. (1991) New Aspects of Antimicrobial Resistance and the Resulting Therapeutic Dilemmas. The Journal of Infectious Disease, 163, 1185-1194.

[5]   Philippon, A., Labia, R. and Jacoby, G. (1989) Extended-Spectrum Beta-Lactamases. Antimicrobial Agents Chemotherapy, 33, 1131-1136.

[6]   Sirot, D., De Champs, C., Chanal, C., Labia, R., Darfeuille-Michaud, A., Perroux, R. and Sirot, J. (1991) Translocation of Antibiotic Resistance Determinants Including an Extended-Spectrum Beta-Lactamase between Conjugative Plasmids of Klebsiella pneumoniae and Escherichia coli. Antimicrobial Agents and Chemotherapy, 35, 1576-1581.

[7]   Meyer, K.S., Urban, C., Eagan, J.A., Berger, B.J. and Rahal, J.J. (1993) Nosocomial Outbreak of Klebsiella Infection Resistant to Late-Generation Cephalosporins. Annals of Internal Medicine, 119, 353-358.

[8]   Bush, K., Jacoby, G.A. and Medeiros, A.A. (1995) A Functional Classification Scheme for Beta-Lactamases and Its Correlation with Molecular Structure. Antimicrobial Agents and Chemotherapy, 39, 1211-1233.

[9]   Cornell, P.M. and Schwertmann, U. (1996) The Iron Oxides: Structure, Properties, Reactions, Occurrence and Uses.2nd Edition, Wiley-VCH, Weinheim, 703.

[10]   Sahoo, Y., Pizem, H., Fried, T., Golodnitsky, D., Burstein, L., Sukenik, C.N. and Markovich, G. (2001) Alkyl Phosphonate/Phosphate Coating on Magnetite Nanoparticles: A Comparison with Fatty Acids. Langmuir, 17, 7907-7911.

[11]   Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Vander Elst, L. and Robert, N.M. (2008) Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications. Chemical Reviews, 108, 2064-2110.

[12]   Massart, R. (1981) Preparation of Aqueous Magnetic Liquids in Alkaline and Acidic Media. IEEE Transactions on Magnetics, 17, 1247-1248.

[13]   Mayrhofer, S., Domig, K.J., Mair, C., Zitz, U., Huys, G. and Kneifel, W. (2008) Comparison of Broth Microdilution, Etest, and Agar Disk Diffusion Methods for Antimicrobial Susceptibility Testing of Lactobacillus Acidophilus Group Members. Applied and Environmental Microbiology, 12, 3745-3748.

[14]   Jorgensen, J.H. and Lee, J.C. (1975) Microdilution Technique for Antimicroial Susceptibility Testing of Haemofilus influenza. Antimicrobial Agents and Chemotherapy, 8, 610-611.

[15]   Erriu, M., Genta, G., Tuveri, E., Orrù, G., Barbato, G. and Levi, R. (2012) Microtiter Spectrophotometric Biofilm Production Assay Analyzed with Metrological Methods and Uncertainty Evaluation. Measurement, 45, 1083-1088.

[16]   Grumezescu, A.M., Gestal, M.C., Holban, A.M., Grumezescu, V., Vasile, B ., Mogoant, L., Iordache, F., Bleotu, C. and Mogoanu, G.D. (2014) Biocompatible Fe3O4 Increases the Efficacy of Amoxicillin Delivery against Gram-Posi- tive and Gram-Negative Bacteria. Molecules, 19, 5013-5027.

[17]   Grumezescu, A.M., Cotar, A.I., Andronescu, E., Ficai, A., Ghitulica, C.D., Grumezescu, V., Vasile, B.S. and Chifiriuc, M.C. (2013) In Vitro Activity of the New Water-Dispersible Fe3O4 @Usnic Acid Nanostructure against Planktonic and Sessile Bacterial Cells. Journal of Nanoparticle Research, 15, 1766.

[18]   Nakamoto, K. (1986) Infrared and Raman Spectra of Inorganic and Coordination Compounds. 4th Edition, John Wiley & Sons, Hoboken, 432.

[19]   Socrates, G. (1980) Infrared Characteristic Group Frequencies. John Wiley & Sons, London.

[20]   Craig, W. (1993) Pharmacodynamics of Antimicrobial Agents as a Basis for Determining Dosage Regimens. European Journal of Clinical Microbiology and Infectious Diseases, 12, S6-S8.

[21]   Guan, J., Liu, S.Z., Lin, Z.F., Li, W.F., Liu, X.F. and Chen, D.C. (2014) Severe Sepsis Facilitates Intestinal Colonization by Extended-Spectrum-β-Lactamase-Producing Klebsiella pneumoniae and Transfer of the SHV-18 Resistance Gene to Escherichia coli during Antimicrobial. Antimicrobial Agents and Chemotherapy, 58, 1039-1046.

[22]   Bingen, E.H., Desjardins, P., Arlet, G., Bourgeois, F., Mariani-Kurkdjian, P., Lambert-Zechovsky, N.Y., Denamur, E., Philippon, A. and Elion, J. (1993) Molecular Epidemiology of Plasmid Spread among Extended Broad-Spectrum-Lac- tamase-Producing Klebsiella pneumoniae Isolates in a Pediatric Hospital. Journal of Clinical Microbiology, 31, 179-184.

[23]   Miethke, M. and Marahiel, M.A. (2007) Siderophore-Based Iron Acquisition and Pathogen Control. Microbiology and Molecular Biology Reviews, 71, 413-451.

[24]   Belikov, V.G. (2007) Pharmaceutical Chemistry. 3rd Edition, Moscow “Medpress-Inform”, Moscow, 589-603.