POS  Vol.6 No.3 , August 2015
A Simulation of Signal Collisions over the North Atlantic for a Spaceborne ADS-B Receiver Using Aloha Protocol
Automatic Dependent Surveillance-Broadcast (ADS-B) is an air traffic surveillance system in which aircraft broadcast GPS position, velocity and status on 1090 MHz at random intervals between 0.4 and 0.6 seconds. ADS-B networks for air traffic monitoring have been implemented worldwide, but ground stations cannot be installed in oceanic regions, leaving these areas uncovered. A solution for tracking aircraft over the ocean is through the monitoring of ADS-B signals by using spaceborne receivers. The Royal Military College of Canada has developed an ADS-B receiver that is scheduled to fly as a technology demonstrator on the Canadian Advanced Nanospace eXperiment-7 (CanX-7) nanosatellite. The payload will collect ADS-B data over the North Atlantic that will be compared to truth data provided by air traffic services. A potential issue for the CanX-7 payload is signal collisions. The extended footprint of the satellite coverage means that a large number of aircraft may be in view at any one time, leading to ADS-B messages that arrive simultaneously at the receiver not being decoded. A simulation of CanX-7 passage over the operations area was carried out to calculate the probability of signal collisions. Using the Aloha Protocol, it was determined that the loss of information as a result of signal collisions is well within the standards of ground based radars used by air traffic system agencies.

Cite this paper
Van Der Pryt, R. and Vincent, R. (2015) A Simulation of Signal Collisions over the North Atlantic for a Spaceborne ADS-B Receiver Using Aloha Protocol. Positioning, 6, 23-31. doi: 10.4236/pos.2015.63003.
[1]   RTCA DO-260B (2009) Minimum Operational Performance Standards for 1090 MHz Extended Squitter Automatic Dependent Surveillance-Broadcast (ADS-B) and Traffic Information Services-Broadcast (TIS-B). Radio Technical Commission for Aeronautics, Washington DC.

[2]   Gupta, O.P. (2011) Global Augmentation of ADS-B Using Iridium NEXT Hosted Payloads. Proceedings of the Integrated Communications, Navigation and Surveillance Conference (ICNS), Herndon, 10-12 May 2011, 1-15.

[3]   Francis, R., Vincent, R., Noel, J.M., Tremblay, P., Desjardins, D., Cushley, A. and Wallace, M. (2011) The Flying Laboratory for the Observation of ADS-B Signals. International Journal of Navigation and Observation, 2011, Article ID: 973656.

[4]   Cushley, A. and Noel, J.M. (2014) Ionospheric Tomography Using ADS-B Signals. Radio Science, 49, 549-563.

[5]   Francis, R., Noel, J. and Vincent, R. (2011) Orbital Monitoring of Automatic Dependent Surveillance-Broadcast (ADS-B) Signals for Improved Air Traffic Surveillance in Remote and Oceanic Airspace. Proceedings of the 62nd International Astronautical Congress, Cape Town, 3-7 October 2011, Paper ID: 10169.

[6]   Van Der Pryt, R. (2014) Modelling Automatic Dependent Surveillance-Broadcast (ADS-B) Signals Received by a Low-Earth-Orbiting Satellite: Examining the North Atlantic Oceanic Airspace Control Areas. M.Sc. Thesis, Royal Military College of Canada, Kingston, 90 p.

[7]   Van Der Pryt, R. and Vincent, R. (2015) A Simulation of the Reception of Automatic Dependent Surveillance- Broadcast (ADS-B) Signals in Low Earth Orbit. International Journal of Navigation and Observation, in Press.

[8]   Bonin, G., Hiemstra, J., Sears, T. and Zee, R.E. (2013) The CanX-7 Drag Sail Demonstration Mission: Enabling Environmental Stewardship for Nano-and Microsatellites. Proceedings of the AIAA/USU Conference on Small Satellites, Technical Session XI: Around the Corner, Paper No. SSC13-XI-9.

[9]   RTCA DO-181D (2008) Minimum Operational Performance Standards for Air Traffic Control Radar Beacon System/Mode Select (ATCRBS/Mode S) Airborne Equipment. Radio Technical Commission for Aeronautics, Washington DC.

[10]   Gupta, P.C. (2006) Data Communications and Computer Networks. Prentice-Hall of India Pvt. Limited, New Dehli.

[11]   Bevington, P.R. (1969) Data Reduction and Error Analysis for the Physical Sciences. McGraw-Hill, New York.

[12]   El-Haik, B. (2005) Axiomatic Quality: Integrating Axiomatic Design with Six-Sigma, Reliability, and Quality Engineering. Wiley and Sons, Hoboken.