JSEMAT  Vol.5 No.4 , October 2015
Adsorption of CO, CO2, NO and NO2 on Carbon Boron Nitride Hetero Junction: DFT Study
Abstract: The adsorption of CO, CO2, NO and CO2 gas molecules on different diameters and chiralities of carbon nanotube-boron nitride nanotube (CNT-BNNT) heterojunctions is investigated, applying the density functional theory and using basis set 6 - 31 g (d,p). The energetic, electronic properties and surface reactivity have been discussed. We found that the best CNT-BNNT heterojunctions for adsorbing the CO, NO, CO2 and NO2 gas molecules is (5,0) CNT-BNNT heterojunction through forming C-N bonds with adsorption energy of -0.26, -0.41 eV, -0.33 and -0.63 eV, respectively. Also, the adsorption of CO, NO, CO2 and NO2 gas molecules on (5,5) and (6,6) CNT-BNNT heterojunctions does not affect the electronic character of the CNT-BNNT heterojunctions, however the adsorption of NO and NO2 gas molecules on (5,0) and (9,0)CNT-BNNT heterojunctions in case of forming C-B bonds increases the band gaps to 1.21 eV and 1.52 eV, respectively. In addition, it is reported that the values of dipole moment for armchair (5,5) and (6,6) CNT-BNNT heterojunctions are not affected by gas adsorption. Also, for the zig-zag (5,0) and (9,0) CNT-BNNT heterojunctions, the values of dipole moment increase through forming C-N bonds and decrease through forming C-B bonds. In addition, it is reported that the highest dipole moment is obtained for (9,0) CNT-BNNT heterojunctions. Therefore, the zig-zag CNT-BNNT heterojunctions can be selected as good candidate for gas sensors.
Cite this paper: El-Barbary, A. , Eid, K. , Kamel, M. , Taha, H. and Ismail, G. (2015) Adsorption of CO, CO2, NO and NO2 on Carbon Boron Nitride Hetero Junction: DFT Study. Journal of Surface Engineered Materials and Advanced Technology, 5, 169-176. doi: 10.4236/jsemat.2015.54019.

[1]   Ju, D., Xu, H., Xu, Q., Gong, H., Qiu, Z., Guo, J., Zhang, J. and Cao, B. (2015) High Triethylamine-Sensing Properties of NiO/SnO2 Hollow Sphere P-N Heterojunction Sensors. Sensors and Actuators B: Chemical, 215, 39-44.

[2]   Hu, Y., Zhou, X., Han, Q., Cao, Q. and Huan, Y. (2003) Sensing Properties of CuO-ZnO Heterojunction Gas Sensors. Materials Science and Engineering: B, 99, 41-43.

[3]   Bulakhe, R.N., Patil, S.V., Deshmukh, P.R., Shinde, N.M. and Lokhande, C.D. (2013) Fabrication and Performance of Polypyrrole (Ppy)/TiO2 Heterojunction for Room Temperature Operated LPG Sensor. Sensors and Actuators B: Chemical, 181, 417-423.

[4]   Feng, C., Li, X., Ma, J., Sun, Y., Wang, C., Sun, P., Zheng, J. and Lu, G. (2015) Facile Synthesis and Gas Sensing Properties of In2O3-WO3 Heterojunction Nanofibers. Sensors and Actuators B: Chemical, 209, 622-629.

[5]   Ling, Z. and Leach, C. (2004) The Effect of Relative Humidity on the NO2 Sensitivity of a SnO2/WO3 Heterojunction Gas Sensor. Sensors and Actuators B: Chemical, 102, 102-106.

[6]   Gui, Y., Dong, F., Zhang, Y., Zhang, Y. and Tia, J. (2013) Preparation and Gas Sensitivity of WO3 Hollow Microspheres and SnO2 Doped Heterojunction Sensors. Materials Science in Semiconductor Processing, 16, 1531-1537.

[7]   Zhang, Y., Gu, H., Suenaga, K. and Iijima, S. (1997) Heterogeneous Growth of B-C-N Nanotubes by Laser Ablation. Chemical Physics Letters, 279, 264.

[8]   Suenaga, K., Colliex, C., Demoncy, N., Loiseau, A., Pascard, H. and Willaime, F. (1997) Synthesis of nanoparticles and nanotubes with well-separated layers of boron nitride and carbon. Science, 278, 653.

[9]   Liu, H.X., Zhang, H.M., Song, J.X. and Yong, Z.Z. (2010) Electronic transport properties of an (8, 0) carbon/boron nitride nanotube heterojunction. Chiniese Physics B, 19, 037104.

[10]   Iijima, S. (1991) Helical Microtubules of Graphitic Carbon. Nature, 354, 56.

[11]   Saito, R., Dresselhaus, G. and Dresselhaus, M.S. (1998) Physical Properties of Carbon Nanotubes. Imperial College Press, London.

[12]   Zhao, P., Wang, P.J., Zhang, Z., Fang, C.F., Wang, Y.M., Zhai, Y.X. and Liu, D.S. (2009) Electronic Transport Properties of DTE-Based Molecular Switch with SWCNT Electrodes: Effect of Chirality. Solid State Communications, 149, 928-931.

[13]   Zhao, P., Wang, P.J., Zhang, Z. and Liu, D.S. (2010) Negative Differential Resistance in a Carbon Nanotube-Based Molecular Junction. Physics Letters A, 374, 1167-1171.

[14]   Blase, X., Rubio, A., Louie, S.G. and Cohen, M.L. (1994) Stability and Band Gap Constancy of Boron Nitride Nanotubes. Europhysics Letters (EPL), 28, 335-340.

[15]   Rubio, A., Corkill, J.L. and Cohen, M.L. (1994) Theory of Graphitic Boron Nitride Nanotube. Physical Review B, 49, 5081-5084.

[16]   Chernozatonskii, L.A., Galpern, E.G., Stankevich, I.V. and Shimkus, Y.K. (1999) Nanotube C-BN Heterostructures: Electronic Properties. Carbon, 37, 117-121.

[17]   Golberg, D., Bando, Y., Mitome, M., Kurashima, K., Grobert, N., Reyes-Reyes, M., Terrones, H. and Terrones, M. (2002) Nanocomposites: Synthesis and Elemental Mapping of Aligned B-C-N Nanotubes. Chemical Physics Letters, 360, 1-7.

[18]   Lambin, Ph., Fonseca, A., Vigneron, J.P., Nagy, J.B. and Lucas, A.A. (1995) Structural and Electronic Properties of Bent Carbon Nanotubes. Chemical Physics Letters, 245, 85-89.

[19]   Zhang, Z.H., Guo, W.L. and Tai, G. (2007) Coaxial Nanotubes: Carbon Nanotubes Sheathed with Boron Nitride Nanotubes. Applied Physics Letters, 90, Article ID: 133103.

[20]   Enyashin, A.N. and Ivanovskii, A.L. (2005) Mechanical and Electronic Properties of a C/BN Nanocable under Tensile Deformation. Nanotechnology, 16, 1304-1310.

[21]   Kawaguchi, M. (1997) B/C/N Materials Based on the Graphite Network. Advanced Materials, 9, 615-625.

[22]   Azevedo, S., de Paiva, R. and Kaschny, J.R. (2006) Stability and Electronic Structure of BxNyCz Nanotubes. Journal of Physics: Condensed Matter, 18, 10871-10879.

[23]   Kim, S.Y., Park, J., Choi, H.C., Ahn, J.P., Hou, J.Q. and Kang, H.S. (2007) X-Ray Photoelectron Spectroscopy and First Principles Calculation of BCN Nanotubes. Journal of the American Chemical Society, 129, 1705-1716.

[24]   Blase, X., Charlier, J.-C., De Vita, A. and Car, R. (1997) Theory of Composite BxCyNz Nanotube Heterojunctions. Applied Physics Letters, 70, 197.

[25]   Liu, H.X., Zhang, H.M., Song, J.X. and Yong, Z.Z. (2010) Electronic Transport Properties of an (8, 0) Carbon/Boron Nitride Nanotube Heterojunction. Chinese Physics B, 19, Article ID: 037104.

[26]   Zhao, P., Liu, D.S., Zhang, Y., Su, Y., Liu, H.Y., Li, S.J. and Chen, G. (2012) Electronic Transport Properties of Zigzag Carbon- and Boron-Nitride-Nanotube Heterostructures. Solid State Communications, 152, 1061-1066.

[27]   Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Zakrzewski, V.G., Montgomery, J.A., Stratmann, R.E., Burant, J.C., Dapprich, S., Millam, J.M., Daniels, A.D., Kudin, K.N., Strain, M.C., Farkas, O., Tomasi, J., Barone, V., Cossi, M., Cammi, R., Mennucci, B., Pomelli, C., Adamo, C., Clifford, S., Ochterski, J., Petersson, G.A., Ayala, P.Y., Cui, Q., Morokuma, K., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Cioslowski, J., Ortiz, J.V., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Gomperts, R., Martin, R.L., Fox, D.J., Keith, T., Al-Lamham, M.A., Peng, C.Y., Nanayakkara, A., Gonzalez, C., Challacombe, M., Gill, P.M.W., Johnson, B.G., Chen, W., Wong, M.W., Andres, J.L., Head-Gordon, M., Replogle, E.S. and Pople, J.A., Gaussian 2004 (Inc., Wallingford CT).

[28]   EL-Barbary, A.A., Lebda, H.I. and Kamel, M.A. (2009) The High Conductivity of Defect Fullerene C40 Cage. Computational Materials Science, 46, 128-132.

[29]   El-Barbary, A.A., Eid, Kh.M., Kamel, M.A. and Hassan, M.M. (2013) Band Gap Engineering in Short Heteronanotube Segments via Monovacancy Defects. Computational Materials Science, 69, 87-94.

[30]   EL-Barbary, A.A., Ismail, G.H. and Babeer, A.M. (2013) Effect of Monovacancy Defects on Adsorbing of CO, CO2, NO and NO2 on Carbon Nanotubes: First Principle Calculations. Journal of Surface Engineered Materials and Advanced Technology, 3, 287-294.

[31]   Hindi, A. and EL-Barbary, A.A. (2015) Hydrogen Binding Energy of Halogenated C40 Cage: An Intermediate between Physisorption and Chemisorption. Journal of Molecular Structure, 1080, 169-175.

[32]   EL-Barbary, A.A. (2015) 1H and 13C NMR Chemical Shift Investigations of Hydrogenated Small Fullerene Cages Cn, CnH, CnHn and CnHn+1: n = 20, 40, 58, 60. Journal of Molecular Structure, 1097, 76-86.

[33]   E EL-Barbary, A.A., Eid, Kh.M., Kamel, M.A., Osman, H.M. and Ismail, G.H. (2014) Effect of Tubular Chiralities and Diameters of Single Carbon Nanotubes on Gas Sensing Behavior: A DFT Analysis. Journal of Surface Engineered Materials and Advanced Technology, 4, 66-74.

[34]   Chang, H., Lee, J.D., Lee, S.M. and Lee, Y.H. (2001) Adsorption of NH3 and NO2 Molecules on Carbon Nanotubes. Applied Physics Letters, 79, 3863.