[1] International Energy Agency (2011) Technology Roadmap Biofuels for Transport. https://www.iea.org/publications/freepublications/publication/Biofuels_Roadmap_WEB.pdf
[2] Encarnação, A.P.G. (2008) Geração de Biodiesel pelos Processos de Transesterificação e Hidroesterificação, Uma Avaliação Econômica, MsC. Thesis, Rio de Janeiro, Brazil.
[3] Amaral, M.A.P. and Da Costa, R.C. (2010) Brazilian Biodiesel Market and Future Prospects. Mercado Brasileiro de Biodiesel e Perspectivas Futuras. BNDES Setorial, 31, 253-280. Biocombustíveis.
[4] Chisti, Y. (2007) Biodiesel from Microalgae. Biotechnology Advances, 25, 294-306.
http://dx.doi.org/10.1016/j.biotechadv.2007.02.001
[5] Ree, R.V. and Annevelink, B. (2007) Status Report Biorefinery, Agrotechnology and Food Sciences Group. Wagenongen.
[6] Wang, B., Li, Y., Wu, N. and Lan, C.Q. (2008) CO2 Bio-Mitigation Using Microalgae. Applied Microbiology and Biotechnology, 79, 707.
http://dx.doi.org/10.1007/s00253-008-1518-y
[7] Brennan, L. and Owende, P. (2010) Biofuels from Microalgae—A Review of Technologies for Production, Processing, and Extractions of Biofuels and Co-Products. Renewable and Sustainable Energy Reviews, In Press, Corrected Proof. 2010.
http://dx.doi.org/10.1016/j.rser.2009.10.009
[8] Reith, J.H. (2004) Sustainable Co-Production of Fine Chemicals and Energy from Microalgae: Public Final E.E.T. Duurzame co-productie van fijnchemicaliën en energie uit micro-algen: Openbaar eindrapport E.E.T. Project K99005/ 398510-1010. Petten, Energieonderzoek Centrum Nederland. ftp://ftp.ecn.nl/pub/www/library/report/2004/c04037.pdf
[9] Mata, T.M., Martins, A.A. and Caetano, N.S. (2010) Microalgae for Biodiesel Production and Other Applications: A Review. Renewable and Sustainable Energy Reviews, 14, 217-232.
http://dx.doi.org/10.1016/j.rser.2009.07.020
[10] Arceo, A.A. (2012) Produção de biodiesel mediante o processo de Hidroesterificação do óleo de microalgas. PhD. Thesis, Federal University of Rio de Janeiro, Brazil.
[11] Holanda, L.R. and Ramos, F.S. (2011) Analysis of the Economic Viability of the Generated Energy through the Micro-algae. Electronic Magazine of Management and System. Análise da Viabilidade econêmica da Energia gerada através das microalgas. Revista Eletrônica Sistemas e Gestão, 6, 327-346.
http://dx.doi.org/10.7177/sg.2011.v6.n3.a7
[12] Derner, R.B., et al. (2006) Microalgae, Products and Applications. Microalgas, produtos e aplicações. Scielo: Revista Ciência Rural, 36, 1959-1967.
[13] Simopoulos, A.P. (2002) The Importance of the Ratio of Omega-6/Omega-3 Essential Fatty Acids. Biomedecine & Pharmacotherapy, 56, 365-379.
http://dx.doi.org/10.1016/S0753-3322(02)00253-6
[14] Becker, W. (2004) Microalgae in Human and Animal Nutrition. In: Richmond, A., Ed., Handbook of Microalgal Culture: Biotechnology and Applied Phycology, Blackwell Science, London, 566 p.
[15] Brown, M.R. (1991) The Amino-Acid and Sugar Composition of 16 Species of Microalgae Used in Mariculture. Jour-nal of Experimental Marine Biology and Ecology, 145, 79-99.
http://dx.doi.org/10.1016/0022-0981(91)90007-J
[16] Radwan, S.S. (1991) Sources of C20-Polyunsaturated Fatty Acids for Microbiological Use. Applied Microbiology Biotechnology, 35, 421-430.
http://dx.doi.org/10.1007/BF00169743
[17] Borowitzka, M.A. (1993) Products from Microalgae. Infofish International, 5, 21-26.
[18] Fábregas, J., et al. (1994) Decrease of Plasma Cholesterol with the Marine Microalgae Dunaliella Tertiolecta in Hypercholesterolemic Rats. Journal of General Microbiology, 40, 553-540.
[19] Gill, I. and Valivety, R. (1997) Polyunsaturated Fatty Acids, Part 1: Occurrence, Biological Activities and Applications. Trends in Biotechnology, 15, 401-409.
http://dx.doi.org/10.1016/S0167-7799(97)01076-7
[20] Yongmanitchai, W. and Ward, O.P. (1991) Screening of Algae for Potential Alternative Sources of Eicosapentaenoic Acid. Phytochemistry, 30, 2963-2967.
http://dx.doi.org/10.1016/S0031-9422(00)98231-1
[21] Pulz, O. (2004) Photobioreactors: Production Systems for Phototrophic Microorganisms. Applied Microbiology and Biotechnology, 57, 287-293.
[22] Euromonitor International (2012) Fortification of Foods with Omega-3 Shows Strong Growth. Additives and Ingredients. Fortificação de alimentos com Ômega-3 mostra forte crescimento. Aditivos e Ingredientes.
http://www.insumos.com.br/aditivos_e_ingredientes/materias/194.pdf
[23] ZEAN Consultores (2013) Thin Film Evaporators. Application: Distillation of Glycerin. Evaporadores de películas finas. Aplicación: Destilación de glicerina. www.interempresas.net
[24] Pedroni, J.M. (2013) The Molecular Distillation and Its Applications in the Industry of Oils and Fats. El destilador molecular y sus aplicaciones en la industria de aceites y grasas. www.oleosegorduras.org.br
[25] Brudy Technology (2013) New Omega-3 Enzyme. Scientific Update. Nuevos ácidos grasos OMEGA-3 Enzimáticos. Actualización Científica.
[26] Chauton, M.S., et al. (2015) Techno-Economic Analysis of Industrial Production of Marine Microalgae as a Source pf EPA and DHA-Rich Raw Material for Aquafeed: Research Challenges and Possibilities. Aquaculture, 436, 95-103.
http://dx.doi.org/10.1016/j.aquaculture.2014.10.038
[27] Abalde, J., Cid, A., Fidalgo, J., Torres, E. and Herrero, C. (1995) Microalgae: Cultivation and Applications. Microalgas: cultivo e aplicaciones. Monography No. 26, Coruña University, A Coruña, 210 p.
[28] Orosa, M., et al. (1997) Production and Analysis of Secondary Carotenoids in Green Algae. Journal of Applied Phycology, 12, 553-556.
http://dx.doi.org/10.1023/A:1008173807143
[29] Skulberg, O.M. (2004) Bioactive Chemicals in Microalgae. In: Richmond, A., Ed., Handbook of Microalgal Culture: Biotechnology and Applied Phycology, Blackwell Science, Oxford, 485-512.
[30] Campo, J.A., et al. (2000) Carotenoid Content of Chlorophycean Microalgae: Factors Determining Lutein Accumulation in Muriellopsis sp. (Chlorophyta). Journal of Biotechnology, 76, 51-59.
http://dx.doi.org/10.1016/S0168-1656(99)00178-9
[31] Ben-Amotz, A. (2004) Industrial Production of Microalgal Cell-Mass and Secondary Products—Major Industrial Species: Dunaliella. In: Richmond, A., Ed., Handbook of Microalgal Culture: Biotechnology and Applied Phycology, Blackwell Science, Oxford, 273-280.
[32] Díaz, G.C., Cruz, Y.R., Fortes, M.M., Viegas, C.V., Carliz, R.G., Furtado, N.C. and Aranda, D.A.G. (2014) Primary Separation of Antioxidants (Unsaponifiables) the Wet Biomass Microalgae Chlamydomonas sp. and Production of the Biodiesel. Natural Science, 6, 1210-1218.
http://dx.doi.org/10.4236/ns.2014.615108
[33] Chamorro, G. (1980) Toxicological Study of Spirulina Algae Pilot Plant Producing Protein (Spirulina Sosa Texcoco SA). Etude toxicologique de l’algue Spirulina plante pilote productrice de protéines (Spirulina de Sosa Texcoco S.A.) UF/MEX/78/048, UNIDO/10.387.
[34] Becker, E.W. (2007) Micro Algae as a Source of Protein. Medical Clinic, Department II, University of Tübingen, Immunopathological Laboratory, Otfried-Müller-Str-10, 72076 Tübingen, Germany.
http://science.naturalnews.com/pubmed/17196357.html
[35] Wijffels, R., Barbosa, M. and Eppink, M.H.M. (2010) Microalgae for the Production of Bulk Chemicals and Biofuels. Biofuels, Bioproducts and Biorefining, 4, 287-295.
http://dx.doi.org/10.1002/bbb.215
[36] Mulder, J.P. and Oliveira, P.E. (2010) Microalgae: The New Energy. Micro-Algas: A Nova Energia. Mimeo, Recife/ PE: UFPE.
[37] Mulbry, W., Konrad, S., Pizarro, C. and Kebedee-Westhead, E. (2008) Treatment of Dairy Manure Effluent Using Freshwater Algae: Algal Productivity and Recovery of Manure Nutrients Using Pilot-Scale Algal Turf Scrubbers. Bioresource Technology, 99, 8137-8142.
http://dx.doi.org/10.1016/j.biortech.2008.03.073
[38] Sawayama, S., Inoue, S., Dote, Y. and Yokoyama, S. (1995) CO2 Fixation and Oil Production through Microalga. Energy Conversion and Management, 36, 729-731.
http://dx.doi.org/10.1016/0196-8904(95)00108-P
[39] Cardoso, A. and Vieira, G.G. (2010) Evaluation of the Potential of Residual Microalgae as an Alternative to the Biodiesel Production Chain. Avaliação do potencial das microalgas residuais como uma alternativa à cadeia produtiva do biodiesel. Testing and Development Laboratory on Biomass and Biofuels—LEDBIO, Federal University of Tocantins.
[40] García, L.M., García, A.I. and Morna, A. (2007) Isolation and Selection of Microalgae Species for the CO2 Bio-Fixa-tion. Journal of Biotechnology, 131, 122-126.
[41] Radmann, E.M., Camerini, F.V., Santos, T.D. and Costa, J.A.V. (2011) Isolation and application of SOX and NOX Resistant Microalgae in Biofixation of CO2 from Thermoelectricity Plants. Energy Conversion and Management, 52, 3132-3136.
http://dx.doi.org/10.1016/j.enconman.2011.04.021
[42] Morais, M.G., Costa, J.A.V., et al. (2008) Bioprocesses for Removing Carbon Dioxide and Nitrogen Oxide Microalgae Order to Use Gases Generated during the Combustion of Coal. Bioprocessos para remoção de dióxido de carbono e óxido de nitrogênio por microalgas visando a utilização de gases gerados durante a combustão do carvão. Química Nova, 31, 1038-1042.
http://dx.doi.org/10.1590/S0100-40422008000500017
[43] Harun, R., Singh, M., Forde, G.M., et al. (2009) Bioprocess Engineering of Microalgae to Produce a Variety of Consumer Products. Renew Sustain Energy, 14, 1037-1047.
http://dx.doi.org/10.1016/j.rser.2009.11.004
[44] Borges, L., et al. (2007) Carbon Absorption Potential for Microalgae Species Used in Aquaculture: First Steps towards the Development of a “Clean Development Mechanism”. Potencial de absorção de carbono por espécies de microalgas usadas na aqüicultura: primeiros passos para o desenvolvimento de um “mecanismo de desenvolvimento limpo”. At-lantica, Rio Grande, 29, 35-46.
[45] Olaizola, M., et al. (2004). Microalgal Removal of CO2 from Flue Gases: CO2 Capture from a Coal Combustor. Mera Pharmaceuticals, Inc., Kailua-Kona, Physical Sciences Inc., Andover.
[46] Kadam, K.L. (1997) Power Plant Fuel as a Source of CO2 for Microalgae Cultivation: Economic Impact of Different Process Options. Energy Conversion and Management, 38, S505-S510.
http://dx.doi.org/10.1016/S0196-8904(96)00318-4
[47] Walke, L., et al. (1998) Recovery of CO2 from Fuel Gas Using in Electrochemical Membrane. Gas Separation and Purification, 2, 72-76.
http://dx.doi.org/10.1016/0950-4214(88)80015-X
[48] Ijima, M., et al. (2003) Fuel Gas CO2 Recovery and Compression Cost Study for CO2 Enhanced Oil Recovery. In: Gale, J. and Kaya, Y., Eds., Greenhouse Gas Control Technologies—6th International Conference, Pergamon Press, Oxford, 109-114.
http://dx.doi.org/10.1016/B978-008044276-1/50018-0
[49] Borges, F.C. (2010) Proposta de um modelo Conceitual de biorrefinaria com estrutura descentralizada. MsC. Thesis, Federal University of Rio Grande do Sul, Porto Alegre.
[50] Wikipedia (2012) Carbon Credits. Créditos de carbono.
http://pt.wikipedia.org/wiki/Cr%C3%A9ditos_de_carbono