[1] Ermentrout, G.B. and Terman, D. (2010) Mathematical Foundations of Neuroscience (Interdisciplinary Applied Mathematics). Springer, New York.
http://dx.doi.org/10.1007/978-0-387-87708-2
[2] Sim, C.K. and Forger, D.B. (2007) Modeling the Electrophysiology of Suprachiasmatic Nucleus Neurons. Journal of Biological Rhythms, 22, 445-453.
http://dx.doi.org/10.1177/0748730407306041
[3] Ashrafuzzaman, M. and Tuszynski, J. (2012) Membrane Biophysics (Biological and Medical Physics, Biomedical Engineering). Springer, New York.
[4] Drion, G., Massotte, L., Sepulchre, R. and Seutin, V. (2011) How Modeling Can Reconcile Apparently Discrepant Experimental Results: The Case of Pacemaking in Dopaminergic Neurons. PLoS Computational Biology, 7, e1002050.
http://dx.doi.org/10.1371/journal.pcbi.1002050
[5] Shirahata, T. (2011) The Effect of Variations in Sodium Conductances on Pacemaking in a Dopaminergic Retinal Neuron Model. Acta Biologica Hungarica, 62, 211-214.
http://dx.doi.org/10.1556/ABiol.62.2011.2.11
[6] Shirahata, T. (2014) Effect of Sodium Conductance Variations on Electrical Behavior of a Neocortical Neuron Model. Acta Biologica Hungarica, 65, 379-384.
http://dx.doi.org/10.1556/ABiol.65.2014.4.2
[7] Shirahata, T. (2015) Numerical Study of a Mathematical Model of Vibrissa Motoneurons: The Relationship between Repetitive Spiking and Two Types of Sodium Conductance. International Journal of Theoretical and Mathematical Physics, 5, 48-52.