[1] Hutmacher, D.W. (2000) Scaffolds in Tissue Engineering Bone and Cartilage. Biomaterials, 21, 2529-2543.
http://dx.doi.org/10.1016/S0142-9612(00)00121-6
[2] Ahmmed, K.T., Ling, E.J.Y., Servio, P. and Kietzig, A.M. (2015) Introducing a New Optimization Tool for Femtosecond Laser-Induced Surface Texturing on Titanium, Stainless Steel, Aluminum and Copper. Optics and Lasers in Engineering, 66, 258-268.
http://dx.doi.org/10.1016/j.optlaseng.2014.09.017
[3] Coelho, P.G., Granjeiro, J.M., Romanos, G.E., Suzuki, M., Silva, N.R., Cardaropoli, G., Thompson, V.P. and Lemons, J.E. (2009) Basic Research Methods and Current Trends of Dental Implant Surfaces. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 88, 579-596.
http://dx.doi.org/10.1002/jbm.b.31264
[4] Ulerich, J.P., Ionescu, L.C., Chen, J.B., Soboyejo, W.O. and Arnold, C.B. (2007) Modifications of Ti-6Al-4V Surfaces by Direct-Write Laser Machining of Linear Grooves. Proceedings of SPIE 6458, Photon Processing in Microelectronics and Photonics VI, 645819.
http://dx.doi.org/10.1117/12.713964
[5] Erdoan, M., Oktem, B., Kalaycolu, H., Yava?, S., Mukhopadhyay, P.K., Eken, K., Ilday, F., et al. (2011) Texturing of Titanium (Ti6Al4V) Medical Implant Surfaces with MHz-Repetition-Rate Femtosecond and Picosecond Yb- Doped Fiber Lasers. Optics Express, 19, 10986-10996.
http://dx.doi.org/10.1364/OE.19.010986
[6] Kokubo, T. and Takadama, H. (2006) How Useful Is SBF in Predicting in Vivo Bone Bioactivity? Biomaterials, 27, 2907-2915.
http://dx.doi.org/10.1016/j.biomaterials.2006.01.017
[7] Mirhosseini, N., Crouse, P.L., Schmidth, M.J.J., Li, L. and Garrod, D. (2007) Laser Surface Micro-Texturing of Ti-6Al-4V Substrates for Improved Cell Integration. Applied Surface Science, 253, 7738-7743.
http://dx.doi.org/10.1016/j.apsusc.2007.02.168
[8] van Tol, A.F., Tibballs, J.E., Gjerdet, N.R. and Ellison, P. (2013) Experimental Investigation of the Effect of Surface Roughness on Bone-Cement-Implant Shear Bond Strength. Journal of the Mechanical Behavior of Biomedical Materials, 28, 254-262.
http://dx.doi.org/10.1016/j.jmbbm.2013.08.005
[9] Tavangar, A., Tan, B. and Venkatakrishnan, K. (2011) Synthesis of Bio-Functionalized Three-Dimensional Titania Nanofibrous Structures Using Femtosecond Laser Ablation. Acta Biomaterialia, 7, 2726-2732.
http://dx.doi.org/10.1016/j.actbio.2011.02.020
[10] Wang, H.S., Liang, C.Y., Yang, Y. and Li, C.Y. (2010) Bioactivities of a Ti Surface Ablated with a Femtosecond Laser through SBF. Biomedical Materials, 5, Article ID: 054115.
http://dx.doi.org/10.1088/1748-6041/5/5/054115
[11] Das, K., Balla, V.K., Bandyopadhyay, A. and Bose, S. (2008) Surface Modification of Laser-Processed Porous Titanium for Load-Bearing Implants. Scripta Materialia, 59, 822-825.
http://dx.doi.org/10.1016/j.scriptamat.2008.06.018
[12] Kazemi, K. and Goldak, J.A. (2009) Numerical Simulation of Laser Full Penetration Welding. Computational Materials Science, 44, 841-849.
http://dx.doi.org/10.1016/j.commatsci.2008.01.002
[13] De Aza, P.N., Fernandez-Pradas, J.M. and Serra, P. (2004) In Vitro Bioactivity of Laser Ablation Pseudowollastonite Coating. Biomaterials, 25, 1983-1990.
http://dx.doi.org/10.1016/j.biomaterials.2003.08.036
[14] Nolte, S., Momma, C., Jacobs, H., Tünnermann, A., Chichkov, B.N., Wellegehausen, B. and Welling, H. (1997) Ablation of Metals by Ultrashort Laser Pulses. Journal of the Optical Society of America B, 14, 2716-2722.
http://dx.doi.org/10.1364/JOSAB.14.002716
[15] Fasasi, A.Y., Mwenifumbo, S., Rahbar, N., Chen, J., Li, M., Beye, A.C., Arnold, C.B. and Soboyejo, W.O. (2009) Nano-Second UV Laser Processed Micro-Grooves on Ti6Al4V for Biomedical Applications. Materials Science and Engineering: C, 29, 5-13.
http://dx.doi.org/10.1016/j.msec.2008.05.002
[16] Kiani, A., Venkatakrishnan, K., Tan, B. and Venkataramanan, V. (2011) Maskless Lithography Using Silicon Oxide Etch-Stop Layer Induced by Megahertz Repetition Femtosecond Laser Pulses. Optics Express, 19, 10834-10842.
http://dx.doi.org/10.1364/OE.19.010834
[17] Kiani, A., Venkatakrishnan, K. and Tan, B. (2010) Direct Laser Writing of Amorphous Silicon on Si-Substrate Induced by High Repetition Femtosecond Pulses. Journal of Applied Physics, 108, Article ID: 074907.
http://dx.doi.org/10.1063/1.3493192
[18] Kuang, J.H., Hung, T.P., Lai, K., Hsu, C.M. and Lin, A.D. (2012) The Surface Absorption Coefficient of S304L Stainless Steel by Nd: YAG Micro-Pulse Laser. Advanced Materials Research, 472, 2531-2534.
http://dx.doi.org/10.4028/www.scientific.net/AMR.472-475.2531
[19] Venkatakrishnan, K., Stanley, P., Sivakumar, N.R., Tan, B. and Lim, L.E.N. (2003) Effect of Scanning Resolution and Fluence Fluctuation on Femtosecond Laser Ablation of Thin Films. Applied Physics A, 77, 655-658.
http://dx.doi.org/10.1007/s00339-002-1668-1
[20] Ramsden, J.J., Allen, D.M., Stephenson, D.J., Alcock, J.R., Peggs, G.N., Fuller, G. and Goch, G. (2007) The Design and Manufacture of Biomedical Surfaces. CIRP Annals-Manufacturing Technology, 56, 687-711.
http://dx.doi.org/10.1016/j.cirp.2007.10.001