JBM  Vol.3 No.7 , July 2015
Efficacy of Some Antibiotics in Curing Resistant Escherichia coli Infection
There is growing interest in re-evaluation of older antibiotics with the wide spread of pathogen resistance, especially gram negative bacteria, which impair treatment of some infections. In contrast various studies have reported that some antibiotics have efficacy in clearing resistant bacterial infections. On account of that it was interesting to evaluate the efficacy of erythromycin, chloramphenicol and/or tenoxicam in curing and/or relieving wound infection of highly resistant Escherichia coli and investigate the possible mechanisms beyond their antibacterial activity. This was achieved through evaluating highly resistant E. coli strains in vitro using agar dilution and in vivo rat models of E. coli infected wound and acute inflammation by carrageenin, where possible mechanisms were evaluated through measuring immunological mediators and histopathological examination. This study revealed that in vivo, erythromycin alone or in combination with tenoxicam significantly improved the healing of infected skin wounds with E. coli irresspective of resistancy in vitro. In addition to the improvement of immunological mediators involved in inflammatory reaction, oxidative stress and in cytokines expression as response to the bacterial infection in vivo. On the other hand chloramphenicol neither alone nor in combination with tenoxicam, achieved any significant effect. Tenoxicam didn’t show antimicrobial activity alone nor in combination with tested antibiotics in vitro, but it has shown synergestic activity in combination with tested antibiotics in vivo. Thus we concluded that immunomodulatory activity of erythromycin through anti-inflammatory and antioxidant effects was the possible mechanisms by which this antibiotic had healed infection with resistant E. coli in vivo, despite its resistancy to this antibiotic in vitro.

Cite this paper
El-Banna, T. , El-Aziz, A. , EL-Mahdy, N. and Samy, Y. (2015) Efficacy of Some Antibiotics in Curing Resistant Escherichia coli Infection. Journal of Biosciences and Medicines, 3, 31-53. doi: 10.4236/jbm.2015.37005.
[1]   Carlet, J., Jarlier, V., Harbarth, S., Voss, A., Goossens, H. and Pittet, D. (2012) Ready for a World without Antibiotics? The Pensières Antibiotic Resistance Call to Action. Antimicrobial Resistance and Infection Control, 1, 11.

[2]   Falagas, M., Bliziotis, I., Kasiakou, S., Samonis, G., Athanassopoulou, P. and Michalopoulos, A. (2005) Outcome of Infections Due to Pandrug-Resistant (PDR) Gram-Negative Bacteria. BMC Infectious Diseases, 5, 24.

[3]   Raz, R. (2012) Fosfomycin: An Old-New Antibiotic. Clinical Microbiology and Infection, 18, 4-7.

[4]   Tsai, W.C., Hershenson, M.B., Zhou, Y. and Sajjan, U. (2009) Azithromycin Increases Survival and Reduces Lung Inflammation in Cystic Fibrosis Mice. Inflammation Research, 58, 491-501.

[5]   Imperi, F., Leoni, L. and Visca, P. (2014) Antivirulence Activity of Azithromycin in Pseudomonas aeruginosa. Frontiers in Microbiology, 5, 178.

[6]   Garnacho-Montero, J., Ortiz-Leyba, C., Jimenez-Jimenez, F.J., Barrero-Almodovar, A.E., Garcia-Garmendia, J.L., Bernabeu-WittelI, M., Gallego-Lara, S.L. and Madrazo-Osuna, J. (2003) Treatment of Multidrug-Resistant Acinetobacter baumannii Ventilator-Associated Pneumonia (VAP) with Intravenous Colistin: A Comparison with Imipenem- Susceptible VAP. Clinical Infectious Diseases, 36, 1111-1118.

[7]   Michalopoulos, A.S., Tsiodras, S., Rellos, K., Mentzelopoulos, S. and Falagas, M.E. (2005) Colistin Treatment in Patients with ICU-Acquired Infections Caused by Multiresistant Gram-Negative Bacteria: The Renaissance of an Old Antibiotic. Clinical Microbiology and Infection, 11, 115-121.

[8]   Velkov, T., Roberts, K.D., Nation, R.L., Thompson, P.E. and Li, J. (2013) Pharmacology of Polymyxins: New Insights into an “Old” Class of Antibiotics. Future Microbiology, 8, 711-724.

[9]   Alanis, A.J. (2005) Resistance to Antibiotics: Are We in the Post-Antibiotic Era? Archives of Medical Research, 36, 697-705.

[10]   Mandell, G.L. and Coleman, E. (2001) Uptake, Transport, and Delivery of Antimicrobial Agents by Human Polymorphonuclear Neutrophils. Antimicrobial Agents and Chemotherapy, 45, 1794-1798.

[11]   Labro, M.T. (2011) C10 Influence of Antibacterial Drugs on the Immune System. In: Nijkamp, F.P. and Parnham, M.J., Eds., Principles of Immunopharmacology, Springer, Berlin, 473-506.

[12]   Ryan, K.J. and Ray, C.G., Eds. (2004) Sherris Medical Microbiology. 4th Edition, McGraw-Hill, New York.

[13]   Parnham, M.J. (2005) Antibiotics, Inflammation and Its Resolution: An Overview. In: Rubin, B.K. and Tamaoki, J., Eds., Antibiotics as Anti-Inflammatory and Immunomodulatory Agents. Progress in Inflammation Research, Springer, Berlin, 27-47.

[14]   Bhadauria, A.R. and Hariharan, C. (2013) Clinical Study of Post Operative Wound Infections in Obstetrics and Gynaecological Surgeries in a Tertiary Care Set Up. International Journal of Reproduction, Contraception, Obstetrics and Gynecology, 2, 631-638.

[15]   Dunne, M., Mason, E.O. and Kaplan, S.L. (1993) Diffusion of Rifampin and Vancomycin through a Staphylococcus epidermidis Biofilm. Antimicrobial Agents and Chemotherapy, 37, 2522-2526.

[16]   Amorena, B., Gracia, E., Monzon, M., Leiva, J., Oteiza, C., Pérez, M., Alabart, J. and Hernández-Yago, J. (1999) Antibiotic Susceptibility Assay for Staphylococcus aureus in Biofilms Developed in Vitro. Journal of Antimicrobial Chemotherapy, 44, 43-55.

[17]   Davis, C., Martiner, L. and Kirsner, R. (2006) The Diabetic Foot: The Importance of Biofilms and Wound Bed Preparation. Current Diabetes Reports, 6, 439-445.

[18]   Abd El-Aziz, A., El-Banna, T., Abo-Kamar, A., Ghazal, A. and Abozahra, R. (2010) In Vitro and in Vivo Activity of Some Antibiotics against Staphylococcal Biofilm and Planktonic Cells Isolated from Diabetic Foot Infections. Journal of American Science, 6.

[19]   El-Banna, T., Abd El-Aziz, A., Abo-Kamar, A., Ghazal, A. and Abozahra, R. (2010) In Vitro Activities of Three Kinds of Antibiotics against Staphylococcal Biofilm and Planktonic Cultures. African Journal of Microbiology Research, 4, 2275-2282.

[20]   Asada, M., Nakagami, G., Minematsu, T., Nagase, T., Akase, T., Huang, L., Yoshimura, K. and Sanada, H. (2012) Novel Models for Bacterial Colonization and Infection of Full-Thickness Wounds in Rats. Wound Repair and Regeneration, 20, 601-610.

[21]   Okusu, H., Ma, D. and Nikaido, H. (1996) AcrAB Efflux Pump Plays a Major Role in the Antibiotic Resistance Phenotype of Escherichia coli Multiple-Antibiotic-Resistance (Mar) Mutants. Journal of Bacteriology, 178, 306-308.

[22]   Nazeer, H.A., Shaik, K.M. and Kolasani, B.P. (2014) Aerobic Bacteriology of Wound Infections with Special Reference to MRSA. Journal of Clinical & Experimental Research, 2, 74-79. http://dx.doi.org/10.5455/jcer.201411

[23]   Collee, J.G., Fraser, A.G., Marmion, B.P. and Simmons, A. (1996) Mackie and MacCartney Practical Medical Microbiology. 14th Edition, Churchill Livingstone, New York.

[24]   Koneman, E., Winn, W., Allen, S., Janda, W., Procop, G., Berger, P.S. and Woods, G. (2006) Chapter 6. Enterobacteriaceae. In: Winn Jr., W.C., Allen, S.D., Janda, W.M., et al., Eds., Koneman’s Color Atlas and Text Book of Diagnostic Microbiology, 6th Edition, Lippincott Williams and Wilkins, Philadelphia, 211-302.

[25]   Tong, J., Liu, Z.-C. and Wang, D.-X. (2011) Azithromycin Acts as an Immunomodulatory Agent to Suppress the Expression of TREM-1 in Bacillus pyocyaneus-Induced Sepsis. Immunology Letters, 138, 137-143.

[26]   CLSI (2010) Performance Standards for Antimicrobial Susceptibility Testing: Twentieth Informational Supplement. NCCLS/CLSI document MI00-S20-U. Clinical and Laboratory Standards Institute, Wayne.

[27]   Cursino, L., Chartone, E.S. and Nascimento, A.M.A. (2005) Synergic Interaction between Ascorbic Acid and Antibiotics against Pseudomonas aeruginosa. Brazilian Archives of Biology and Technology, 4, 3.

[28]   Paino, I.M.M., Ximenes, V.F., da Fonseca, L.M., Kanegae, M.P.P., Khalil, N.M. and Brunetti, I.L. (2005) Effect of Therapeutic Plasma Concentrations of Non-Steroidal Anti-Inflammatory Drugs on the Production of Reactive Oxygen Species by Activated Rat Neutrophils. Brazilian Journal of Medical and Biological Research, 38, 543-551.

[29]   Mackay, M.L., Milne, K. and Gould, I.M. (2000) Comparison of the Methods for Assessing Synergic Antibiotic Interactions. International Journal of Antimicrobial Agents, 15, 125-129.

[30]   Odds, F.C. (2003) Synergy, Antagonism, and What the Chequerboard Puts between Them. Journal of Antimicrobial Chemotherapy, 52, 1.

[31]   Lau, T.W., Lam, F.F.Y., Lau, K.M., Chan, Y.W., Lee, K.M., Sahota, D.S., Ho, Y.Y., Fung, K.P., Leung, P.C. and Lau, C.B.S. (2009) Pharmacological Investigation on the Wound Healing Effects of Radix Rehmanniae in an Animal Model of Diabetic Foot Ulcer. Journal of Ethnopharmacology, 123, 155-162. http://dx.doi.org/10.1016/j.jep.2009.02.010

[32]   Davis, S.C., Ricotti, C., Cazzaniga, A., Welsh, E., Eaglstein, W.H. and Mertz, P.M. (2008) Microscopic and Physiologic Evidence for Biofilm-Associated Wound Colonization in Vivo. Wound Repair and Regeneration, 16, 23-29.

[33]   Naziroglu, M., Uguz, AC., Gokçimen, A., Bülbül, M., Karatopuk, DU., Türker, Y. and Cerçi, C. (2008) Tenoxicam Modulates Antioxidant Redox System and Lipid Peroxidation in Rat Brain. Neurochemical Research, 33, 1832-1837.

[34]   Amacher, D.E., Schomaker, S.J. and Retsema, J.A. (1991) Comparison of the Effects of the New Azalide Antibiotic, Azithromycin and Erythromycin Estolate on Rat Liver Cytochrome P-450. Antimicrobial Agents and Chemotherapy, 35, 1186-1190.

[35]   Halpert, J., Balfour, C., Miller, N.E., Morgan, E.T., Dunbar, D. and Kaminsky, L.S. (1985) Isozyme Selectivity of the Inhibition of Rat Liver Cytochromes P-450 by Chloramphenicol in Vivo. Molecular Pharmacology, 28, 290-296.

[36]   Lau, T.W., Sahota, D.S., Lau, C.H., Chan, C.M., Lam, F.C., Ho, Y.Y., Fung, K.P., Lau, C.B.S. and Leung, P.C. (2008) An in Vivo Investigation on the Wound Healing Effect of Two Medicinal Herbs Using an Animal Model with Foot Ulcer. European Surgical Research, 41, 15-23.

[37]   Tasleem, F., Azhar, I., Ali, S.N., Perveen, S. and Mahmood, Z.A. (2014) Analgesic and Anti-Inflammatory Activities of Piper nigrum L. Asian Pacific Journal of Tropical Medicine, 7, S461-S468.

[38]   Wang, W., Wang, S.-X. and Guan, H.-S. (2012) The Antiviral Activities and Mechanisms of Marine Polysaccharides: An Overview. Marine Drugs, 10, 2795-2816.

[39]   Radhakrishnan, R., Moore, S.A. and Sluka, K.A. (2003) Unilateral Carrageenan Injection into Muscle or Joint Induces Chronic Bilateral Hyperalgesia in Rats. Pain, 104, 567-77.

[40]   Winter, C.A., Risley, E.A. and Nuss, G.W. (1962) Carrageenin Induced Edema in Hind Paw on the Rat as an Assay for Antiinflammatory Drugs. Proceedings of the Society for Experimental Biology and Medicine, 111, 544-547.

[41]   Fath, R.B, Deschner, E.E., Winawer, S.J. and Dworkin, B.M. (1984) Degraded Carrageenan-Induced Colitis in CF1 Mice. A Clinical, Histopathological and Kinetic Analysis. Digestion, 29, 197-203.

[42]   Al-Arfaj, A.S., Mustafa, A.A., Alballa, S.R., Tuwaijri, A.S. and Al-Dalaan, A.N. (2003) Interaction of Allopurinol and Non-Steroidal Anti-Inflammatory Drugs on the Carrageenan-Induced Rat Paw Edema. Saudi Medical Journal, 24, 936-940.

[43]   Igbal, K., Khan, A. and Khattak, M.M.A.K. (2004) Biological Significance of Ascorbic Acid (Vitamin C) in Human Health—A Review. Pakistan Journal of Nutrition, 3, 5-13.

[44]   Ikeda, M., Nakabayashi, K., Shinkai, M., Hara, Y., Kizaki, T., Oh-ishi, S. and Ohno, H. (2004) Supplementation of Antioxidants Prevents Oxidative Stress during a Deep Saturation Dive. The Tohoku Journal of Experimental Medicine, 203, 353-357.

[45]   Kanter, M., Coskun, O., Armutcu, F., Uz, Y.H. and Kizilay, G. (2005) Protective Effects of Vitamin C, Alone or in Combination with Vitamin A, on Endotoxin-Induced Oxidative Renal Tissue Damage in Rats. The Tohoku Journal of Experimental Medicine, 206, 155-162.

[46]   Miranda, K., Espey, M. and Wink, D. (2001) A Rapid, Simple Spectrophotometric Method for Simultaneous Detection of Nitrate and Nitrite. Nitric Oxide, 5, 62-71.

[47]   Ellman, G.L. (1959) Tissue Sulfahydryl Groups. Archives of Biochemistry and Biophysics, 82, 70-77.

[48]   Yoshioka, T., Kawada, K., Shimada, T. and Mori, M. (1979) Lipid Peroxidation in Maternal and Cord Blood and Protective Mechanism against Activated-Oxygen Toxicity in Blood. American Journal of Obstetrics Gynecology, 135, 372-376.

[49]   Bancroft, J.D. and Stevens, A. (1975) Histopathological Stains and Their Diagnostic Uses. Churchill Livingstone, Edinburgh, London and New York.

[50]   Kugelberg, E., Norstrom, T., Petersen, T. K., Petersen, T.K. and Duvold, T. (2005) Establishment of a Superfacial Skin Infection Model in Mice by Using Staphylococcus aureus and Streptococcus pyogens. Antimicrobial Agents and Chemotherapy, 49, 3435-3441.

[51]   Nau, R. and Tauber, S.C. (2008) Immunomodulatory Properties of Antibiotics. Current Molecular Pharmacology, 1, 68-79.

[52]   Li, J., Nation, R.L., Turnidge, J.D., Milne, R.W., Coulthard, K., Rayner, C.R. and Paterson, D.L. (2006) Colistin: The Re-Emerging Antibiotic for Multidrug-Resistant Gram-Negative Bacterial Infections. The Lancet Infectious Diseases, 6, 589-601.

[53]   Aminov, R.I. (2009) The Role of Antibiotics and Antibiotic Resistance in Nature. Environmental Microbiology, 11, 2970-2988.

[54]   Aminov, R.I. (2013) Biotic Acts of Antibiotics. Frontiers in Microbiology, 4, 241.

[55]   Sacerdote, P. and Panerai, A.E. (1993) Effect of Tenoxicam and Indomethacin on the Chemotaxis Induced by Substance P and Interleukin-8 on Human Monocytes and Polymorphonuclear Cells. International Journal of Tissue Reactions, 15, 175-180.

[56]   Chollet, R., Chevalier, J., Bryskier, A. and Pages, J.M. (2004) The AcrAB-TolC Pump Is Involved in Macrolide Resistance but Not in Telithromycin Efflux in Enterobacter aerogenes and Escherichia coli. Antimicrobial Agents and Chemotherapy, 48, 3621-3624.

[57]   Tuomanen, E. (1986) Phenotypic Tolerance: The Search for β-Lactam Antibiotics That Kill Nongrowing Bacteria. Review of Infectious Diseases, 8, S279-S291.

[58]   Carone, B.R., Xu, T., Murphy, K.C. and Marinus, M.G. (2014) High Incidence of Multiple Antibiotic Resistant Cells in Cultures of in Enterohemorrhagic Escherichia coli O157:H7. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 759, 1-8.

[59]   Duo, M., Hou, S. and Ren, D. (2008) Identifying Escherichia coli Genes Involved in Intrinsic Multidrug Resistance. Applied Microbiology and Biotechnology, 81, 731-41.

[60]   Zhang, C., Walker, L.M. and Mayeux, P.R. (2000) Role of Nitric Oxide in Lipopolysaccharide-Induced Oxidant Stress in the Rat Kidney. Biochemical Pharmacology, 59, 203-209.

[61]   Cimen, B., Turkozkan, N., Unlu, A. and Karasu, C. (2005) Effects of Melatonin on 3-Nitrotyrosine Formation and Energy Charge Ratio in Guinea Pig Kidney in LPS-Induced Stress. Cell Biochemistry and Function, 23, 273-277.

[62]   Vinegar, R., Schreiber, W. and Hugo, R. (1969) Biophasic Development of Carrageenan Odema in Rats. Journal of Pharmacology and Experimental Therapeutics, 166, 96-103.

[63]   Salvemini, D., Wang, Z.Q., Wyatt, P.S., Bourdon, D.M., Marino, M.H., Manning, P.T. and Currie, M.G. (1996) Nitric Oxide: A Key Mediator in the Early and Late Phase of Carrageenan-Induced Rat Paw Inflammation. British Journal of Pharmacology, 118, 829-838.

[64]   Lam, F.F.Y. and Ng, E.S.K. (2003) Characterization of Somatostatin Actions on Knee Joint Blood Vessels of the Rat. European Journal of Pharmacology, 474, 295-301.

[65]   Feghali, C.A. and Wright, T.M. (1997) Cytokines in Acute and Chronic Inflammation. Frontiers in Bioscience, 2, d12-d26.

[66]   Dinarello, CA. (1996) Biologic Basis for Interleukin-1 in Disease. Blood, 87, 2095-2147.

[67]   Schultz, M.J., Rijneveld, W., Floruin, S., Edwards, CK., Dinarello, CA. and Van der Pol, T. (2002) Role of Interleukin-1 in the Pulmonary Immune Responseduring Pseudomonas aeruginosa Pneumonia. American Journal of Physiology-Lung Cellular and Molecular Physiology, 282, L285-L290.

[68]   Boelens, J.J., Zaat, S.A.J., Murk, J.L., Weening, J.J., Poll, T.V.D. and Dankert, J. (2000) Enhanced Susceptibility to Subcutaneous Abscess Formation and Persistent Infection around Catheters Is Associated with Sustained Interleukin-1β Levels. Infection and Immunity, 68, 1692-1695.

[69]   Boelens, J.J., Poll, T.V.D., Zaat, S.A.J., Murk, J.L.A.N., Weening, J.J. and Dankert, J. (2000) Interleukin-1 Receptor Type I Gene-Deficient Mice Are Less Susceptible to Staphylococcus epidermidis Biomaterial-Associated Infection than Are Wild-Type Mice. Infection and Immunity, 68, 6924-6931.

[70]   Altenburg, J., de Graaff, C.S., van der Werf, T.S. and Boersma, W.G. (2011) Immunomodulatory Effects of Macrolide Antibiotics—Part 1: Biological Mechanisms. Respiration, 81, 67-74.

[71]   Takahashi, T., Suga, M., Matsukawa, A., Sato, K., Okamoto, T., Ichiyasu, H., Ohkawara, S., Yoshinaga, M. and Ando, M. (2001) Erythromycin Attenuates an Experimental Model of Chronic Bronchiolitis via Augmenting Monocyte Chemoattractant Protein-1. European Respiratory Journal, 17, 360-367.

[72]   Garey, K.W., Alwani, A., Danziger, L.H. and Rubinstein, I. (2003) Tissue Reparative Effects of Macrolide Antibiotics in Chronic Inflammatory Sinopulmonary Diseases. Chest, 123, 261-265.

[73]   Kourlas, H. (2006) Anti-Inflammatory Properties of Macrolide Antibiotics. Journal of Pharmacy Practice, 19, 326-329.

[74]   Holtmann, M.H. and Neurath, M.F. (2004) Differential TNF-Signaling in Chronic Inflammatory Disorders. Current Molecular Medicine, 4, 439-444.

[75]   Skerrett, S.J., Martin, T.R., Chi, E.Y., Peschon, J.J., Mohler, K.M. and Wilson, C.B. (1999) Role of the Type 1 TNF Receptor in Lung Inflammation after Inhalation of Endotoxin or Pseudomonas aeruginosa. American Journal of Physiology-Lung Cellular and Molecular Physiology, 276, L715-L727.

[76]   Nair, M.P., Mahajan, S., Reynolds, J.L., Aalinkeel, R., Nair, H., Schwartz, S.A. and Kandaswami, C. (2006) The Flavonoid Quercetininhibits Proinflammatory Cytokine (Tumor Necrosisfactor Alpha) Gene Expression in Normal Peripheral Mononuclear Cells via Modulation of the NF-κB System. Clinical and Vaccine Immunology, 13, 319-328.

[77]   González, R., Ballester, I., López-Posadas, R., Suárez, M.D., Zarzuelo, A., Martínez, O. and Sánchez De Medina, F. (2011) Effects of Flavonoidsand Other Polyphenols on Inflammation. Critical Reviews in Food Science and Nutrition, 51, 331-362.

[78]   Katsori, A.M., Chatzopoulou, M., Dimas, K., Kontogiorgis, C., Patsilinakos, A., Trangas, T. and Hadjipavlou-Litina, D. (2011) Curcuminanalogues as Possible Anti-Proliferative & Anti-Inflammatoryagents. European Journal of Medicinal Chemistry, 46, 2722-2735.

[79]   Syggelos, S.A., Giannopoulou, E., Gouvousis, P.A., Andonopoulos, A.P., Aletras, A.J. and Panagiotopoulos, E. (2007) In Vitro Effects of Non-Steroidal Anti-Inflammatory Drugs on Cytokine, Prostanoid and Matrix Metalloproteinase Production by Interface Membranes from Loose Hip or Knee Endoprostheses. Osteoarthritis Cartilage, 15, 531-542.

[80]   Schultz, M.J., Speelman, P. and van der Poll, T. (2001) Erythromycin Inhibits Pseudomonas aeruginosa-Induced Tumour Necrosis Factor-α Production in Human Whole Blood. Journal of Antimicrobial Chemotherapy, 48, 275-278.

[81]   Schultz, M.J., Speelman, P., Zaat, S., van Deventer, S.J.H. and van der Poll, T. (1998) Erythromycin Inhibits Tumor Necrosis Factor Alpha and Interleukin 6 Production Induced by Heat-Killed Streptococcus pneumoniae in Whole Blood. Antimicrobial Agents and Chemotherapy, 42, 1605-1609.

[82]   Schultz, M.J., Speelman, P., Hack, C.E., Buurman, W.A., van Deventer, S.J. and van Der Poll, T. (2000) Intravenous Infusion of Erythromycin Inhibits CXC Chemokine Production, but Augments Neutrophil Degranulation in Whole Blood Stimulated with Streptococcus pneumoniae. Journal of Antimicrobial Chemotherapy, 46, 235-240.

[83]   Hou, Y.C., Janczuk, A. and Wang, P.G. (1999) Current Trends in the Development of Nitric Oxide Donors. Current Pharmaceutical Design, 5, 417-441.

[84]   Joshi, M.S., Ponthier, J.L. and Lancaster, J.R. (1999) Cellular Antioxidant and Pro-Oxidant Actions of Nitric Oxide. Free Radical Biology & Medicine, 27, 1357-1366.

[85]   Ozkan, Y., Yardym-Akaydyn, S., Sepici, A., Keskin, E., Sepici, V. and Simsek, B. (2007) Oxidative Status in Rheumatoid Arthritis. Clinical Rheumatology, 26, 64-68.

[86]   Meki, A.M.A, Hamed, E.A. and Ezam, K.A. (2009) Effect of Green Tea Extract and Vitamin C on Oxidant or Antioxidant Status of Rheumatoid Arthritis Rat Model. Indian Journal of Clinical Biochemistry, 24, 280-287.

[87]   Ialenti, A., Ianaro, A., Moncada, S. and Di Rosa, M. (1992) Modulation of Acute Inflammation by Endogenous Nitricoxide. European Journal of Pharmacology, 211, 177-182.

[88]   Maruyama, H., Sakamoto, T., Araki, Y. and Hara, H. (2010) Anti-Inflammatory Effect of Bee Pollen Ethanol Extract from Cistus sp. of Spanish on Carrageenan-Induced Rat Hind Paw Edema. BMC Complementary and Alternative Medicine, 10, 30.

[89]   Amsden, G.W. (2005) Anti-Inflammatory Effects of Macrolides—An Underappreciated Benefit in the Treatment of Community-Acquired Respiratory Tract Infections and Chronic Inflammatory Pulmonary Conditions? Journal of Antimicrobial Chemotherapy, 55, 10-21.

[90]   Kanoh, S. and Rubin, B.K. (2010) Mechanisms of Action and Clinical Application of Macrolides as Immunomodulatory Medications. Clinical Microbiology Reviews, 23, 590-615.

[91]   Kohri, K., Tamaoki, J., Kondo, M., Aoshiba, K., Tagaya, E. and Nagai, A. (2000) Macrolide Antibiotics Inhibit Nitric Oxide Generation by Rat Pulmonary Alveolar Macrophages. European Respiratory Journal, 15, 62-67.

[92]   Tamaoki, J. (2004) The Effects of Macrolides on Inflammatory Cells. Chest, 125, 41-51.

[93]   Ozgocmen, S., Ardicoglu, O., Erdogan, H., Fadillioglu, E. and Gudul, H. (2005) In Vivo Effect of Celecoxib and Tenoxicam on Oxidant/Anti-Oxidant Status of Patients with Knee Osteoarthritis. Annals of Clinical & Laboratory Science, 35, 137-143.

[94]   Páez, P.L., Becerra, M.C. and Albesa, I. (2008) Chloramphenicol-Induced Oxidative Stress in Human Neutrophils. Basic & Clinical Pharmacology & Toxicology, 103, 349-353.

[95]   Babior, B.M., Kipnes, R.S. and Curnutte, J.T. (1973) Biological Defense Mechanisms. The Productions by Leukocytes of Superoxide, a Potential Bactericidal Agent. Journal of Clinical Investigation, 52, 741-744.

[96]   Hancock, J.T., Desikan, R. and Neill, S.J. (2001) Role of Reactive Oxygen Species in Cell Signalling Pathways. Biochemical Society Transactions, 29, 345-350.

[97]   Misso, N.L., Peacock, C.D., Watkins, D.N. and Thompson, P.J. (2000) Nitrite Generation and Antioxidant Effects during Neutrophil Apoptosis. Free Radical Biology & Medicine, 28, 934-943.

[98]   Pacher, P., Schulz, R., Liaudet, L. and Szabó, C. (2005) Nitrosative Stress and Pharmacological Modulation of Heart Failure. Trends in Pharmacological Sciences, 26, 302-310.

[99]   Gupta, P., Narang, M., Banerjee, B.D. and Basu, S. (2004) Oxidative Stress in Term Small for Gestational Age Neonates Born to Undernourished Mothers: A Case Control Study. BMC Pediatrics, 4, 14.

[100]   Rice-Evans, C. and Burdon, R. (1993) Free Radical Lipid Interactions and Their Pathological Consequences. Progress in Lipid Research, 32, 71-110.

[101]   Ullevig, S., Kim, H.S. and Asmis, R. (2013) S-Glutathionylation in Monocyte and Macrophage (Dys) Function. International Journal of Molecular Sciences, 14, 15212-15232.

[102]   Zitka, O., Skalickova, S., Gumulec, J., Masarik, M., Adam, V., Hubalek, J., Trnkova, L., Kruseova, J., Eckschlager, T. and Kizek, R. (2012) Redox Status Expressed as GSH:GSSG Ratio as a Marker for Oxidative Stress in Paediatrictumour Patients. Oncology Letters, 4, 1247-1253.

[103]   Ganesan, N., Chegu, H. and Chandrasekaran, A.N. (2003) Effect of Type II Collagen Treatment on the Antioxidant Status in Immune Tissues of Adjuvant Induced Arthritic Rats. Indian Journal of Clinical Biochemistry, 18, 216-22.

[104]   Tarpley, M.M., Wink, D.A. and Grisham, M.B. (2004) Methods for Detection of Reactive Metabolites of Oxygen and Nitrogen: In Vitro and in Vivo Considerations. American Journal of Physiology-Regulatory, Integrative and Comparative physiology, 286, R431-R444.

[105]   Hartel, C., Strunk, T., Bucsky, P. and Schultz, C. (2004) Effects of Vitamin C on Intracytoplasmic Cytokine Production in Human Whole Blood Monocytes and Lymphocytes. Cytokine, 27, 101-106.

[106]   Hand, W.L., Hand, D.L. and King-Thompson, N.L. (1990) Antibiotic Inhibition of the Respiratory Burst Response in Human Polymorphonuclear Leukocytes. Antimicrobial Agents and Chemotherapy, 34, 863-870.

[107]   Sato, E., Nelson, D.K., Koyama, J., Hoyt, J.C. and Robbins, R.A. (2000) Erythromycin Modulates Eosinophil Chemotactic Cytokine Production by Lung Fibroblasts in Vitro. Antimicrobial Agents and Chemotherapy, 45, 401-406.

[108]   He, Z.Y., Zou, Z.X., Yu, L., Zhong, N.S., Ran, P.X. and Zhong, X.N. (2005) Effects of Erythromycin on Hydrogen Peroxide-Induced Interleukin-8 Synthesis and Regulation of Glutathione in Human Bronchial Epithelial Cells. Zhonghua Yi Xue Za Zhi (National Medical Journal of China), 85, 976-980.

[109]   Farombi, E.O., Adaramoye, O.A. and Emerole, G.O. (2002) Influence of Chloramphenicol on Rat Hepatic Microsomal Components and Biomarkers of Oxidative Stress: Protective Role of Antioxidants. Pharmacology & Toxicology, 91, 129-134.

[110]   Henrotin, Y.E., Bruckner, P. and Pujol, J.P.L. (2003) The Role of Reactive Oxygen Species in Homeostasis and Degradation of Cartilage. Osteoarthritis and Cartilage, 11, 747-755.

[111]   Mitsuyama, T., Tanaka, T., Hidaka, K., Abe, M. and Hara, N. (1995) Inhibition by Erythromycin of Superoxide Anion Production by Human Polymorphonuclear Leukocytes through the Action of Cyclic AMP-Dependent Protein Kinase. Respiration, 62, 269-73.

[112]   Wenisch, C., Parschalk, B., Zedtwitz-Liebenstein, K., Weihs, A., el Menyawi, I. and Graninger, W. (1996) Effect of Single Oral Dose of Azithromycin, Clarithromycin, and Roxithromycin on Polymorphonuclear Leukocyte Function Assessed ex Vivo by Flow Cytometry. Antimicrobial Agents and Chemotherapy, 40, 2039-2042.

[113]   Sugiyama, Y., Yanagisawa, K., Tominaga, S.I. and Kitamura, S. (1999) Effects of Long-Term Administration of Erythromycin on Cytokine Production in Rat Alveolar Macrophages. European Respiratory Journal, 14, 113-116.

[114]   Baik, A.R. and Lee, J. (2007) Erythromycin Inhibits Interleukin-6 and Interleukin-8 Expression and Promotes Apoptosis of Activated Human Neutrophils in Vitro. Korean Journal of Physiology & Pharmacology, 11, 259-262.

[115]   Boughton-Smith, N.K., Deakin, A.M., Follenfant, R.L., Whittle, B.J.R. and Garland, L.G. (1993) Role of Oxygenradicals and Arachidonic Acid Metabolites in the Reverse Passive Arthus Reaction and Carrageenin Paw Oedema in the Rat. British Journal of Pharmacology, 110, 896-902.

[116]   Fantone, J.C. and Ward, P.A. (1982) Role of Oxygen-Derived Free Radicals and Metabolites in Leukocyte-Dependent Inflammatory Reactions. The American Journal of Pathology, 107, 397-418.

[117]   Labro, M.T. (2000) Interference of Antibacterial Agents with Phagocyte Functions: Immunomodulation or “Immuno-Fairy” Tales? Clinical Microbiology Reviews, 13, 615-650.

[118]   Forsgren, A. and Riesbeck, K. (2003) Antibiotics and the Immune System. In: Finch, R.G., Greenwood, D., Norrby, S.R. and Whitley, R.J., Eds., Antibiotic and Chemotherapy, 8th Edition, Churchill Livingstone, London, 101-106.

[119]   Van Bambeke, F., Montenez, J.P., Piret, J., Tulkens, P.M., Courtoy, P.J. and Mingeot-Leclercq, M.P. (1996) Interaction of the Macrolide Azithromycin with Phospholipids: I. Inhibition of Lysosomal Phospholipase A1 Activity. European Journal of Pharmacology, 314, 203-214.

[120]   Anderson, R., Theron, A.J. and Feldman, C. (1996) Membrane-Stabilizing, Anti-Inflammatory Interactions of Macrolides with Human Neutrophils. Inflammation, 20, 693-705.

[121]   Feldman, C., Anderson, R., Theron, A.J., Ramafi, G., Cole, P.J. and Wilson, R. (1997) Roxithromycin, Clarithromycin, and Azithromycin Attenuate the Injurious Effects of Bioactive Phospholipids on Human Respiratory Epithelium in Vitro. Inflammation, 21, 655-665.

[122]   Jain, A., Sangal, L., Basal, E., Kaushal, G.P. and Agarwal, S.K. (2002) Anti-Inflammatory Effects of Erythromycin and Tetracycline on Propionibacterium acnes Induced Production of Chemotactic Factors and Reactive Oxygen Species by Human Neutrophils. Dermatology Online Journal, 8, 2.

[123]   Schultz, M.J. (2004) Macrolide Activities Beyond Their Antimicrobial Effects: Macrolides in Diffuse Panbronchiolitis and Cystic Fibrosis. Journal of Antimicrobial Chemotherapy, 54, 21-28.

[124]   Ianaro, A., Ialenti, A., Maffia, P., Sautebin, L., Rombola, L., Carnuccio, R., Iuvone, T., D’Acquisto, F. and Di Rosa, M. (2000) Anti-Inflammatory Activity of Macrolide Antibiotics. The Journal of Pharmacology and Experimental Therapeutics, 292, 156-163.

[125]   Ichimiya, T., Yamasaki, T. and Nasu, M. (1994) In-Vitro Effects of Antimicrobial Agents on Pseudomonas aeruginosa Biofilm Formation. Journal of Antimicrobial Chemotherapy, 34, 331-341.

[126]   Takeoka, K., Ichimiya, T., Yamasaki, T. and Nasu, M. (1998) The in Vitro Effect of Macrolides on the Interaction of Human Polymorphonuclear Leukocytes with Pseudomonas aeruginosa in Biofilm. Chemotherapy, 44, 190-197.

[127]   Bui, K.Q., Banevicius, M.A., Nightingale, C.H., Quintiliani, R. and Nicolau, D.P. (2000) In Vitro and in Vivo Influence of Adjunct Clarithromycin on the Treatment of Mucoid Pseudomonas aeruginosa. Journal of Antimicrobial Chemotherapy, 45, 57-62.

[128]   Vranes, J. (2000) Effect of Subminimal Inhibitory Concentrations of Azithromycin on Adherence of Pseudomonas aeruginosa to Polystyrene. Journal of Chemotherapy, 12, 280-285.

[129]   Yanagihara, K., Tomono, K., Kuroki, M., Kaneko, Y., Sawai, T., Ohno, H., Miyazaki, Y., Higashiyama, Y., Maesaki, S., Kadota, J.I. and Kohno, S. (2000) Intrapulmonary Concentrations of Inflammatory Cytokines in a Mouse Model of Chronic Respiratory Infection Caused by Pseudomonas aeruginosa. Clinical Experimental Immunology, 122, 67-71.

[130]   Sharma, S., Jaffe, A. and Dixon, G. (2007) Immunomodulatory Effects of Macrolide Antibiotics in Respiratory Disease: Therapeutic Implications for Asthma and Cystic Fibrosis. Paediatr. Drugs, 9, 107-118.

[131]   Yamasaki, T. (1990) Adherence of Pseudomonas aeruginosa to Mouse Tracheal Epithelium: The Effect of Antimicrobial Agents Bronchiolitis. The Japanese Association for Infectious Diseases, 64, 575-583.

[132]   Swidsinski, A., Ladhoff, A., Pernthaler, A., Swidsinski, S., Loening-Baucke, V., Ortner, M., Weber, J., Hoffmann, U., Schreiber, S., Dietel, M. and Lochs, H. (2002) Mucosal Flora in Inflammatory Bowel Disease. Gastroenterology, 122, 44-54.

[133]   Kotlowski, R., Bernstein, C.N., Sepehri, S. and Krause, D.O. (2007) High Prevalence of Escherichia coli Belonging to the B2+D Phylogenetic Group in Inflammatory Bowel Disease. Gut, 56, 669-675.

[134]   Nijnik, A. (2013) Immunomodulatory Approaches for Prevention and Treatment of Infectious Diseases. Current Opinion in Microbiology, 16, 590-595.

[135]   Choi, J.H., Song, M.J., Kim, S.H., Choi, S.M., Lee, D.G., Yoo, J.H. and Shin, W.S. (2003) Effect of Moxifloxacin on Production of Proinflammatory Cytokines from Human Peripheral Blood Mononuclear Cells. Antimicrobial Agents and Chemotherapy, 47, 3704-3707.

[136]   Wise, R.D. (2007) Submicrobial Doxycycline and Rosacea. Comprehensive Therapy, 33, 78-81.

[137]   Abelson, M.B., Shapiro, A., Makino, A. and Lane, K. (2008) The Other Side of Antibiotics. Review of Ophthalmology, 15, 70-73.

[138]   Labro, M.T. (2012) Immunomodulatory Effects of Antimicrobial Agents. Part I: Antibacterial and Antiviral Agents. Expert Review of Anti-Infective Therapy, 10, 319-340.

[139]   Kwiatkowska, B., Maslinska, M., Przygodzka, M., Dmowska-Chalaba, J., Dabrowska, J. and Sikorska-Siudek, K. (2013) Immune System as a New Therapeutic Target for Antibiotics. Advances in Bioscience and Biotechnology, 4, 91-101.

[140]   Ogrendik, M. (2009) Efficacy of Roxitromycin in Adult Patients with Rheumatoid Arthritis Who Had Not Received Disease-Modifying Antirheumatic Drugs: A 3-Month, Randomized, Double-Blind, Placebo-Controlled Trial. Clinical Therapeutics, 31, 1754-1764.