Back
 WJM  Vol.1 No.3 , June 2011
A Simplified Nonlinear Generalized Maxwell Model for Predicting the Time Dependent Behavior of Viscoelastic Materials
Abstract: In this paper, a simple nonlinear Maxwell model consisting of a nonlinear spring connected in series with a nonlinear dashpot obeying a power-law with constant material parameters, for representing successfully the time-dependent properties of a variety of viscoelastic materials, is proposed. Numerical examples are performed to illustrate the sensitivity of the model to material parameters.
Cite this paper: nullM. Monsia, "A Simplified Nonlinear Generalized Maxwell Model for Predicting the Time Dependent Behavior of Viscoelastic Materials," World Journal of Mechanics, Vol. 1 No. 3, 2011, pp. 158-167. doi: 10.4236/wjm.2011.13021.
References

[1]   T. Alfrey and P. Doty, “The Methods of Specifying the Properties of Viscoelastic Materials,” Journal of Applied Physics, Vol. 16, No. 11, 1945, pp. 700-713. doi:10.1063/1.1707524

[2]   R. Chotard-Ghodsnia and C. Verdier, “Rheology of Living Materials,” In: F. Mollica, L. Preziosi and K. R. Rajagopal, Eds., Modeling of Biological Materials, Springer, New York, 2007, pp. 1-31. doi:10.1007/978-0-8176-4411-6_1

[3]   D. T. Corr, M. J. Starr, R. Vanderby, Jr and T. M. Best, “A Nonlinear Generalized Maxwell Fluid Model for Viscoelastic Materials,” Journal of Applied Mechanics, Vol. 68, No. 5, 2001, pp. 787-790. doi:10.1115/1.1388615

[4]   M. D. Monsia, “Lambert and Hyperlogistic Equations Models for Viscoelastic Materials: Time-Dependent Analysis,” International Journal of Mechanical Engineering, Serials Publications, New Delhi, India, January-June 2011.

[5]   M. D. Monsia, “A Hyperlogistic-Type Model for the Prediction of Time-Dependent Nonlinear Behavior of Viscoelastic Materials,” International Journal of Mechanical Engineering, Serials Publications, New Delhi, India, January-June 2011.

[6]   M. D. Monsia, “A Nonlinear Generalized Standard Solid Model for Viscoelastic Materials,” International Journal of Mechanical Engineering, Serials Publications, New Delhi, India, January-June 2011.

[7]   M. D. Monsia, “A Modified Voigt Model for Nonlinear Viscoelastic Materials,” International Journal of Mechanical Engineering, Serials Publications, New Delhi, India, January-June 2011.

[8]   M. D. Monsia, “A Nonlinear Generalized Four-parameter Voigt Model for Viscoelastic Materials,” International Journal of Mechanical Engineering, Serials Publications, New Delhi, India, July-December 2011.

[9]   C. Debouche, “Présentation Coordonnée de Différents Modèles de Croissance, ” Revue de Statistique Appliquée, Vol. 27, No. 4, 1979, pp. 5-22. http://www.numdam.org/item?id=RSA_1979_27_4_5_0>

[10]   O. Garcia, “Unifying Sigmoid Univariate Growth Equations,” Forest Biometry, Modelling and Information Sciences, Vol. 1, 2005, pp. 63-68. http://www.fbmis.info/A/5.1.GarciaO.1.pdf

 
 
Top