The Electrokinetic Cross-Coupling Coefficient: Two-Scale Homogenization Approach

References

[1] A. Bolève, A. Crespy, A. Revil, F. Janod and J. I. Mattiuzzo, “Streaming Potentials of Granular Media: Influencies of the Dukhin and Reynolds Numbers,” Journal of Geophysical Research, Vol. 112, No. B8, 2007, pp. 1-14.

[2] A. Jardani, A. Revil, A. Bolève and J. P. Dupont, “The Three-Dimensional Inversion of Self-Potential Data Used to Constrain the Pattern of Groundwater Flow in Geothermal Fields,” Journal of Geophysical Research, Vol. 113, No. 89, 2008, pp. 1-22.

[3] G. de Marsily, “Quantative Hydrology,” Academic Press, London, 1986.

[4] B. J. Kirby and E. F. (Jr.) Hasselbrink, “Zeta Potential of Microfluidic Substrates. 1. Theory, Experimental Techni- ques and Effect on Separations,” Electrophoresis, Vol. 25, No. 2, 2004, pp. 187-202.
doi:10.1002/elps.200305754

[5] Z. Zhu, M. N. Toks?z and X. Zhan, “Experimental Studies of Streaming Potential and High Frequency Seismoelectric Conversion,” Consortium Reports of MIT Earth Resources Laboratory, 2009.

[6] J. H. Saunders, M. D. Jackson and C. C. Pain, “A New Numerical Model of Electrokinetic Potential Response during Hydrocarbon Recovery,” Geophysical Reserach Letters, Vol. 33, No. 15, 2006, pp. L15316, 1-6.

[7] J. Lyklema, “Fundamentals of Colloid and Interface Science,” Academic Press, London, 1993.

[8] T. Ishido and H. Mizutani, “Experimental and Theoretical Basis for Electrikinetic Phenomena in Rock-Water Systems and Its Application to Geophysis,” Journal of Geophysical Research, Vol. 86, 1981, pp. 1763-1775.
doi:10.1029/JB086iB03p01763

[9] D. B. Pengra, S. X. Li and P. Wong, “Determination of Rock Properties by Low Frequency AC Electrokinetics,” Journal of Geophysical Research, Vol. 104, No. B12, 1999, pp. 29485-29508. doi:10.1029/1999JB900277

[10] A. Revil, D. Hermitte, M. Voltz, R. Moussa, J.-G. Lacas, G. Bourrié and F. Troland, “Self-Potential Sygnals Associated with Variations of the Hydrolic Head during an Infiltration Experiment,” Geophysical Research Letters, Vol. 29, No. 7, 2002, pp. 10.1029/2001GLO14 294.

[11] R. Burridge and J. B. Keller, “Poroelastisity Equations Derived from Microstructure,” Journal of the Acoustical Society of America, Vol. 70, No. 4, 1981, pp. 1140-1146.
doi:10.1121/1.386945

[12] E. Sanchez-Palencia, “Non-Homogeneous Media and Vibration Theory,” Springer, Heidelberg, 1980.

[13] S. R. Pride, A. F. Gangi and F. D. Morgan, “Deriving the Equations of Motion for Porous Isotropic Media,” Journal of the Acoustical Society of America, Vol. 92, No. 6, 1992, pp. 3278-3290.
doi:10.1121/1.404178

[14] S. R. Pride and J. G. Berryman, “Linear Dymanics of Double-Porosity Dual-Permeability Materials i. Gover- ning Equations and Acoustic Attenuation,” Physical Review E, Vol. 68, No. 3, 2003, p. 036603.
doi:10.1103/PhysRevE.68.036603

[15] S. R. Pride, “Governing Equations for the Coupled Electromagnetics and Acoustics of Porous Media,” Physical Review B, Vol. 50, No. 21, 1994, pp. 15678- 15696. doi:10.1103/PhysRevB.50.15678

[16] G. Allaire, “Homogenization and Two-Scale Conver- gence,” SIAM Journal on Mathematical Analysis, Vol. 23, No. 6, 1992, pp. 1482-1518. doi:10.1137/0523084

[17] A. Bensoussan, J. -L. Lions and G. Papanicolaou, “Asy- mptotic Analysis for Periodic Structures,” North-Holland, Amsterdam, 1978.

[18] L. Tartar, “An Introduction to Navier-Stokes Equation and Oceanography,” Series: Lecture Notes of the Unione Matematica Italiana, Vol. 1, 2006.

[19] J. G. Berryman, “Comparison of Two Up-Scaling Methods in Poroelasticity and Its Generalizations,” Proceedings of 17th ASCE Engineering Mechanics Conference, Newark, June 2004, pp. 13-16.

[20] A. N. Chatterjee, D. M. Cannon, E. N. Gatimu, J. V. Sweedler, N. R. Aluru and P. W. Bohn, “Modelling and Simulation of Ionic Currents in Three Dimensional Microfluidic Devices with Nanofluidic Interconnects,” Journal of Nanopart. Research, Vol. 7, No. 4-5, 2005, pp. 507-516. doi:10.1007/s11051-005-5133-x

[21] Y. Amirat and V. Shelukhin, “Homogenization of Electroosmotic Flow Equations in Porous Media,” Journal of Mathematical Analysis and Applications, Vol. 342, No. 2, 2008, pp. 1227-1245.
doi:10.1016/j.jmaa.2007.12.075

[22] Y. Amirat and V. Shelukhin, “Homogenization of the Poisson-Boltzmann Equation” In: A. V. Fursikov, G. P. Galdi and V. V. Pukhnachev Eds., Advances in Mathematical Fluid Mechanics, The Alexander V. Kazhikhov Memorial Volume, Birkh?user Verlag, Basel, 2010, pp. 29-41,

[23] V. V. Shelukhin and Y. Amirat, “On Electrolytes Flow in Porous Media,” Applied Mathematics and Technical Physics, Vol. 49, No. 4, 2008, 162-173.

[24] J. C. Maxwell, “Treatise on Electricity and Magnetism,” Clarendon Press, Oxford, 1881.

[25] S. R. de Groot and P. G. Mazur, “Non-Equilibrium Thermodynamics,” North-Holland, Amsterdam, 1962.

[26] J. Neev and F. R. Yeatts, “Electrokinetic Effects in Fluid Saturated Poroelastic Media,” Physical Review B, Vol. 40, No. 13, 1989, pp. 409135-409141.
doi:10.1103/PhysRevB.40.9135

[27] V. V. Kormiltsev and V. V. Ratushnyak, “Theoretical and Experimental Basis for Spontaneous Polarization of Rocks in the Oil and Gas Wells,” Ekaterinburg, URO RAS (in Russian), 2007.

[28] P. Sennet and J. P. Oliver, “Colloidal Dispersion, Electrokinetic Effects, and the Concept of the Zeta Potential; Chemistry and Physics of Interfaces,” American Chemical Society, Washington, D.C., 1965.

[29] V. V. Shelukhin and S. A. Terentev, “Frequency Dispersion of Dielectric Permittivity and Electric Conductivity of Rocks via Two-Scale Homogenization of the Maxwell Equations,” Progress in Electromagnetic Research B, Vol. 14, 2009, pp. 175-202.
doi:10.2528/PIERB09021804

[30] V. V. Shelukin and S. A. Terentev, “Homogenization of Maxwell Equations and the Maxwell-Wagner Dispersion,” Doklady Earth Sciences, Vol. 424, No. 3, 2009, pp. 155-159. doi:10.1134/S1028334X09010334

[31] E. D. Shchukin, A. V. Pertsev and E. A. Amelina, “Colloidal Chemistry,” Vysshaya Shkola, Moscow, 1992.

[32] B. Wurmstich and F. D. Morgan, “Modeling of Streaming Potential Responses Caused by Oil Pumping,” Geophysics, Vol. 59, No. 1, 1994, pp. 46-56.
doi:10.1190/1.1443533