WJM  Vol.1 No.3 , June 2011
Asymptotic Expansion of Temperature Close to a Singularity of a Plate
Abstract: The thermal conduction in a thin laminated plate is considered here. The lateral surface of the plate is not regular. Consequently, the boundary of the middle plane admits a geometrical singularity. Close to the origin, the lateral edge forms an angle. We shall prove that the classical bidimensional problem associated with the thin plate problem is not valid. In this paper, using the boundary layer theory, we describe the local behavior of the plate, close to the perturbation.
Cite this paper: nullI. Titeux, "Asymptotic Expansion of Temperature Close to a Singularity of a Plate," World Journal of Mechanics, Vol. 1 No. 3, 2011, pp. 109-114. doi: 10.4236/wjm.2011.13015.

[1]   H. Dumontet, “Homogénéisation et Effets de Bords dans les Matériaux Composites,” Ph. D. Thesis, Paris, 1990.

[2]   I. Titeux, “Problèmes de Fracture et Comportement Local Pour les Plaques Composites Anisotropes,” Ph. D. Thesis, Paris, 1995.

[3]   A. R. Saidi, F. Hejripour and E. Jomehzadeh, “On the Stress Singularities and Boundary Layer in Moderately Thick Functionally Graded Sectorial Plates,” Applied Mathematical Modelling, Vol. 34, No. 11, 2010, pp 3478-3492. doi:10.1016/j.apm.2010.02.036

[4]   E. Jomehzadeh and A. R. Saidi, “Analytical Solution for Free Vibration of Transversely Isotropic Sector Plates Using a Boundary Layer Function,” Thin Walled Structures, Vol. 47, No. 1, 2009, pp. 82-88. doi:10.1016/j.tws.2008.05.004

[5]   J. Sanchez-Hubert and E. Sanchez-Palencia, “Intro- duction Aux Methods Asymptotiques et à L'homo- généisation,” Masson, Paris, 1992.

[6]   D. Leguillon and E. Sanchez-Palencia, “Computation of Singular Solutions in Elliptic Problems and Elasticity,” Masson, Paris, 1988.

[7]   I. Titeux and Y. Yakubov, M3AS Vol. 7, No. 7, 1997, pp. 1035-1050.