[1] Hattar, S., Asselin, A., Greenspan, D., Oboeuf, M., Berdal, A. and Sautier, J.-M. (2005) Potential of Biomimetic Surfaces to Promote in Vitro Osteoblast-Like Cell Differentiation. Biomaterials, 26, 839-848.
http://dx.doi.org/10.1016/j.biomaterials.2004.03.026
[2] Hench, L.L., Xynos, I.D., Edgar, A.J., Buttery, L.D.K., Polak, J.M., Zhong, J.-P., et al. (2002) Gene Activating Glasses. Journal of Inorganic Materials, 17, 897-909.
http://www.jim.org.cn/EN/Y2002/V17/I5/897
[3] Xynos, I.D., Edgar, A.J., Buttery, L.D.K., Hench, L.L. and Polak, J.M. (2000) Ionic Products of Bioactive Glass Dissolution Increase Proliferation of Human Osteoblasts and Induce Insulin-Like Growth Factor II mRNA Expression and Protein Synthesis. Biochemical and Biophysical Research Communications, 276, 461-465.
http://dx.doi.org/10.1006/bbrc.2000.3503
[4] Barboza, E.P., Caúla, A.L., de Oliveira Caúla, F., de Souza, R.O., Neto, L.G., Sorensen, R.G., et al. (2004) Effect of Recombinant Human Bone Morphogenetic Protein-2 in an Absorbable Collagen Sponge with Space-Providing Biomaterials on the Augmentation of Chronic Alveolar Ridge Defects. Journal of Periodontology, 75, 702-708.
http://dx.doi.org/10.1902/jop.2004.75.5.702
[5] Bergeron, E., Marquis, M.E., Chrétien, I. and Faucheux, N. (2007) Differentiation of Preosteoblasts Using a Delivery System with BMPs and Bioactive Glass Microspheres. Journal of Materials Science: Materials in Medicine, 18, 255- 263.
http://dx.doi.org/10.1007/s10856-006-0687-4
[6] Best, S.M., Porter, A.E., Thian, E.S. and Huang, J. (2008) Bioceramics: Past, Present and for the Future. Journal of the European Ceramic Society, 28, 1319-1327.
http://dx.doi.org/10.1016/j.jeurceramsoc.2007.12.001
[7] Blaker, J.J., Gough, J.E., Maquet, V., Notingher, I. and Boccaccini, A.R. (2003) In Vitro Evaluation of Novel Bioactive Composites Based on Bioglass (R)-Filled Polylactide Foams for Bone Tissue Engineering Scaffolds. Journal of Biomedical Materials Research Part A, 67A, 1401-1411.
http://dx.doi.org/10.1002/jbm.a.20055
[8] Blaker, J.J., Nazhat, S.N. and Boccaccini, A.R. (2004) Development and Characterisation of Silver-Doped Bioactive Glasscoated Sutures for Tissue Engineering and Wound Healing Applications. Biomaterials, 25, 1319-1329.
http://dx.doi.org/10.1016/j.biomaterials.2003.08.007
[9] Chen, Q.Z.Z., Thompson, I.D. and Boccaccini, A.R. (2006) 45S5 Bioglass—Derived Glass—Ceramic Scaffolds for Bone Tissue Engineering. Biomaterials, 27, 2414-2425.
http://dx.doi.org/10.1016/j.biomaterials.2005.11.025
[10] Hench, L.L. (2009) Genetic Design of Bioactive Glass. Journal of the European Ceramic Society, 29, 1257-1265.
http://dx.doi.org/10.1016/j.jeurceramsoc.2008.08.002
[11] Hench, L.L. (1998) Bioceramics. Journal of the American Ceramic Society, 81, 1705-1728.
http://dx.doi.org/10.1111/j.1151-2916.1998.tb02540.x
[12] Hench, L.L., Xynos, I.D. and Polak, J.M. (2004) Bioactive Glasses for in Situ Tissue Regeneration. Journal of Biomaterials Science-Polymer Edition, 15, 543-562.
http://dx.doi.org/10.1163/156856204323005352
[13] Knabe, C., Stiller, M., Berger, G., Reif, D., Gildenhaar, R., Howlett, C.R. and Zreiqat, H. (2005) The Effect of Bioactive Glass Ceramics on the Expression of Bone-Related Genes and Proteins in Vitro. Clinical Oral Implants Research, 16, 119-127.
http://dx.doi.org/10.1111/j.1600-0501.2004.01066.x
[14] Xynos, I.D., Hukkanen, M.V.J., Batten, J.J., Buttery, L.D., Hench, L.L. and Polak, J.M. (2000) Bioglass 45S5 Stimulates Osteoblast Turnover and Enhances Bone Formation in Vitro: Implications and Applications for Bone Tissue Engineering. Calcified Tissue International, 67, 321-329.
http://dx.doi.org/10.1007/s002230001134
[15] Neo, M., Nakamura, T., Ohtsuki, C., Kokubo, T. and Yamamuro, T. (1993) Apatite Formation on 3 Kinds of Bioactive Material at an Early Stage in Vivo—A Comparative Study by Transmission Electron Microscopy. Journal of Biomedical Materials Research, 27, 999-1006.
http://dx.doi.org/10.1002/jbm.820270805
[16] Maquet, V., Boccaccini, A.R., Pravata, L., Notingher, I. and Jérme, R. (2003) Preparation, Characterization, and in Vitro Degradation of Bio-Resorbable and Bioactive Composites Based on Bioglass-Filled Polylactide Foams. Journal of Biomedical Materials Research Part A, 66A, 335-346.
http://dx.doi.org/10.1002/jbm.a.10587
[17] Marques, A.C., Almeidaa, R.M., Thiema, A., Wang, S.J., Falk, M. and Jain, H. (2009) Sol-Gel-Derived Glass Scaffold with High Pore Interconnectivity and Enhanced Bioactivity. Journal of Materials Research, 24, 3495-3502.
http://dx.doi.org/10.1557/jmr.2009.0440
[18] Garcia, A.J., Ducheyne, P. and Boettiger, D. (1998) Effect of Surface Reaction Stage on Fibronectin-Mediated Adhesion of Osteoblast-Like Cells to Bioactive Glass. Journal of Biomedical Materials Research, 40, 48-56.
http://dx.doi.org/10.1002/(SICI)1097-4636(199804)40:1<48::AID-JBM6>3.0.CO;2-R
[19] Zhang, K., Wang, Y.B., Hillmyer, M.A. and Francis, L.F. (2004) Processing and Properties of Porous Poly(L-lactide)/ Bioactive Glass Composites. Biomaterials, 25, 2489-2500.
http://dx.doi.org/10.1016/j.biomaterials.2003.09.033
[20] Arcos, D., Ragel, C.V. and Vallet-Regi, M. (2001) Bioactivity in Glass/PMMA Composites Used as Drug Delivery System. Biomaterials, 22, 701-708.
http://dx.doi.org/10.1016/S0142-9612(00)00233-7
[21] Boccaccini, A.R. and Maquet, V. (2003) Bioresorbable and Bioactive Polymer/Bioglass Composites with Tailored Pore Structure for Tissue Engineering Applications. Composites Science and Technology, 63, 2417-2429.
http://dx.doi.org/10.1016/S0266-3538(03)00275-6
[22] Yao, J., Radina, S., Leboy, P.S. and Ducheyne, P. (2005) The Effect of Bioactive Glass Content on Synthesis and Bioactivity of Composite Poly (Lactic-Co-Glycolic Acid)/Bioactive Glass Substrate for Tissue Engineering. Biomaterials, 26, 1935-1943.
http://dx.doi.org/10.1016/j.biomaterials.2004.06.027
[23] Kontonasaki, E., Sivropoulou, A., Papadopoulou, L., Garefis, P., Paraskevopoulos, K.M. and Koidis, P. (2006) Attachment and Proliferation of Human Periodontal Ligament Fibroblasts on Fibronectin-Coated Bioactive Glass Modified Ceramics. Bioceramics, 18, 727-730.
[24] Kaufmann, E., Ducheyne, P. and Shapiro, I.M. (2000) Evaluation of Osteoblast Response to Porous Bioactive Glass (45S5) Substrates by RT-PCR Analysis. Tissue Engineering, 6, 19-28.
http://dx.doi.org/10.1089/107632700320856
[25] Lu, H.H., El-Amin, S.F., Scott, K.D. and Laurencin, C.T. (2003) Three-Dimensional, Bioactive, Biodegradable, Polymer- Bioactive Glass Composite Scaffolds with Improved Mechanical Properties Support Collagen Synthesis and Mineralization of Human Osteoblast-Like Cells in Vitro. Journal of Biomedical Materials Research Part A, 64A, 465-474.
http://dx.doi.org/10.1002/jbm.a.10399
[26] Moura, J., Teixeira, L.N., Ravagnani, C., Peitl, O., Zanotto, E.D., Beloti, M.M., et al. (2007) In Vitro Osteogenesis on a Highly Bioactive Glass-Ceramic (Biosilicate). Journal of Biomedical Materials Research Part A, 82A, 545-557.
http://dx.doi.org/10.1002/jbm.a.31165
[27] Oonishi, H., Kushitani, S., Yasukawa, E., Iwaki, H., Hench, L.L., Wilson, J., et al. (1997) Particulate Bioglass Compared with Hydroxyapatite as a Bone Graft Substitute. Clinical Orthopaedics and Related Research, 334, 316-325.
http://www.ncbi.nlm.nih.gov/pubmed/9005929
http://dx.doi.org/10.1097/00003086-199701000-00041
[28] Sepulveda, P., Jones, J.R. and Hench, L.L. (2001) Characterization of Melt-Derived 45S5 and Sol-Gel-Derived 58S Bioactive Glasses. Journal of Biomedical Materials Research, 58, 734-740.
http://dx.doi.org/10.1002/jbm.10026
[29] Silver, I.A., Deas, J. and Erecinska, M. (2001) Interactions of Bioactive Glasses with Osteoblasts in Vitro: Effects of 45S5 Bioglass, and 58S and 77S Bioactive Glasses on Metabolism, Intracellular Ion Concentrations and Cell Viability. Biomaterials, 22, 175-185.
http://dx.doi.org/10.1016/S0142-9612(00)00173-3
[30] Varanasi, V.G., Saizb, E., Loomer, P.M., Ancheta, B., Uritani, N., Ho, S.P., et al. (2009) Enhanced Osteocalcin Expression by Osteoblast-Like Cells (MC3T3-E1) Exposed to Bioactive Coating Glass (SiO2-CaO-P2O5-MgO-K2O-Na2O System) Ions. Acta Biomaterialia, 5, 3536-3547.
http://dx.doi.org/10.1016/j.actbio.2009.05.035
[31] Verrier, S., Blakera, J.J., Maquet, V., Hench, L.L. and Boccaccini, A.R. (2004) PDLLA/Bioglass Composites for Soft-Tissue and Hard-Tissue Engineering: An in Vitro Cell Biology Assessment. Biomaterials, 25, 3013-3021.
http://dx.doi.org/10.1016/j.biomaterials.2003.09.081
[32] Vogel, M., Voigta, C., Gross, U.M. and Müller-Mai, C.M. (2001) In Vivo Comparison of Bioactive Glass Particles in Rabbits. Biomaterials, 22, 357-362.
http://dx.doi.org/10.1016/S0142-9612(00)00191-5
[33] Yuan, H.P., de Bruijn, J.D., Zhang, X.D., van Blitterswijk, C.A. and de Groot, K. (2001) Bone Induction by Porous Glass Ceramic Made from Bioglass (45S5). Journal of Biomedical Materials Research, 58, 270- 276.
http://www.ncbi.nlm.nih.gov/pubmed/11319740
http://dx.doi.org/10.1002/1097-4636(2001)58:3<270::AID-JBM1016>3.0.CO;2-2
[34] Gao, T.J., Arob, H.T., Ylnen, H. and Vuorio, E. (2001) Silica-Based Bioactive Glasses Modulate Expression of Bone Morphogenetic Protein-2 mRNA in Saos-2 Osteoblasts in Vitro. Biomaterials, 22, 1475-1483.
http://dx.doi.org/10.1016/S0142-9612(00)00288-X
[35] Kim, H.W., Lee, H.H. and Knowles, J.C. (2008) Nanofibrous Glass Tailored with Apatite-Fibronectin Interface for Bone Cell Stimulation. Journal of Nanoscience and Nanotechnology, 8, 3013-3019.
http://www.ncbi.nlm.nih.gov/pubmed/18681040
http://dx.doi.org/10.1166/jnn.2008.106
[36] Leach, J.K., Kaiglerb, D., Wang, Z., Krebsbach, P.H. and Mooney, D.J. (2006) Coating of VEGF-Releasing Scaffolds with Bioactive Glass for Angiogenesis and Bone Regeneration. Biomaterials, 27, 3249-3255.
http://dx.doi.org/10.1016/j.biomaterials.2006.01.033
[37] Bacakova, L., Filova, E., Kubies, D., Machova, L., Proks, V., Malinova, V., et al. (2007) Adhesion and Growth of Vascular Smooth Muscle Cells in Cultures on Bioactive RGD Peptide-Carrying Polylactides. Journal of Materials Science-Materials in Medicine, 18, 1317-1323.
http://dx.doi.org/10.1007/s10856-006-0074-1
[38] De Giglio, E., Sabbatinib, L., Colucci, S. and Zambonin, G. (2000) Synthesis, Analytical Characterization, and Osteoblast Adhesion Properties on RGD-Grafted Polypyrrole Coatings on Titanium Substrates. Journal of Biomaterials Science, Polymer Edition, 11, 1073-1083.
http://dx.doi.org/10.1163/156856200743580
[39] Morgan, A.W., Roskova, K.E., Lin-Gibson, S., Kaplan, D.L., Becker, M.L. and Simon Jr., C.G. (2008) Characterization and Optimization of RGD-Containing Silk Blends to Support Osteoblastic Differentiation. Biomaterials, 29, 2556- 2563.
http://dx.doi.org/10.1016/j.biomaterials.2008.02.007
[40] Itoh, D., Yoneda, S., Kuroda, S., Kondo, H., Umezawa, A., Ohya, K., et al. (2002) Enhancement of Osteogenesis on Hydroxyapatite Surface Coated with Synthetic Peptide (EEEEEEEPRGDT) in Vitro. Journal of Biomedical Materials Research, 62, 292-298.
http://dx.doi.org/10.1002/jbm.10338
[41] Moursi, A.M., Damsky, C.H., Lull, J., Zimmerman, D., Doty, S.B., Aota, S., et al. (1996) Fibronectin Regulates Calvarialosteoblast Differentiation. Journal of Cell Science, 109, 1369-1380.
http://www.ncbi.nlm.nih.gov/pubmed/8799825
[42] Yang, X.B., Roacha, H.I., Clarke, N.M.P., Howdle, S.M., Quirk, R., Shakesheff, K.M., et al. (2001) Human Osteoprogenitor Growth and Differentiation on Synthetic Biodegradable Structures after Surface Modification. Bone, 29, 523- 531.
http://dx.doi.org/10.1016/S8756-3282(01)00617-2
[43] Massia, S.P. and Hubbell, J.A. (1991) An RGD Spacing of 440 nm Is Sufficient for Integrin Alpha V Beta 3-Mediated Fibroblast Spreading and 140 nm for Focal Contact and Stress Fiber Formation. Journal of Cell Biology, 114, 1089- 1100.
http://www.ncbi.nlm.nih.gov/pubmed/1714913
http://dx.doi.org/10.1083/jcb.114.5.1089
[44] Chen, D., Zhao, M. and Mundy, G.R. (2004) Bone Morphogenetic Proteins. Growth Factors, 22, 233-241.
http://www.ncbi.nlm.nih.gov/pubmed/15621726
http://dx.doi.org/10.1080/08977190412331279890
[45] Cheng, H.W., Jiang, W., Phillips, F.M., Haydon, R.C., Peng, Y., Zhou, L., et al. (2003) Osteogenic Activity of the Fourteen Types of Human Bone Morphogenetic Proteins (BMPs). Journal of Bone and Joint Surgery, American Volume, 85-A, 1544-1552.
http://www.ncbi.nlm.nih.gov/pubmed/12925636
[46] Lee, K.S., Kim, H.J., Li, Q.L., Chi, X.Z., Ueta, C., Komori, T., et al. (2000) Runx2 Is a Common Target of Transforming Growth Factor Beta1 and Bone Morphogenetic Protein 2, and Cooperation between Runx2 and Smad5 Induces Osteoblast-Specific Gene Expression in the Pluripotentmesenchymal Precursor Cell Line C2C12. Molecular and Cellular Biology, 20, 8783- 8792.
http://www.ncbi.nlm.nih.gov/pubmed/11073979
http://dx.doi.org/10.1128/MCB.20.23.8783-8792.2000
[47] Wozney, J.M. (1992) The Bone Morphogenetic Protein Family and Osteogenesis. Molecular Reproduction and Deve- lopment, 32, 160-167.
http://dx.doi.org/10.1002/mrd.1080320212
[48] Lee, J., Lee, J. and Murphy, W. (2010) Modular Peptides Promote Human Mesenchymal Stem Cell Differentiation on Biomaterial Surfaces. Acta Biomateriala, 6, 21-28.
http://dx.doi.org/10.1016/j.actbio.2009.08.003
[49] Jedlicka, S.S., Rickus, J.L. and Zemyanov, D.Y. (2007) Surface Analysis by X-Ray Photoelectron Spectroscopy of Sol-Gel Silica Modified with Covalently Bound Peptides. Journal of Physical Chemistry B, 111, 11850-11857.
http://dx.doi.org/10.1021/jp0744230
[50] Jedlicka, S.S., Little, K.M., Nivens, D.E., Zemlyanov, D. and Ri, J.L. (2007) Peptide Ormosils as Cellular Substrates. Journal of Materials Chemistry, 17, 5058-5067.
http://dx.doi.org/10.1039/b705393b
[51] Vueva, Y., Gama, A., Teixeira, A.V., Almeida, R.M., Wang, S.J., Falk, M.M., et al. (2010) Monolithic Glass Scaffolds with Dual Porosity Prepared by Polymer-Induced Phase Separation and Sol-Gel. Journal of the American Ceramic Society, 93, 1945-1949.
http://dx.doi.org/10.1111/j.1551-2916.2010.03697.x
[52] Wang, S., Falk, M.M., Rashad, A., Saad, M.M., Marques, A.C., Almeida, R.M., et al. (2011) Evaluation of 3D Nano- Macro Porous Bioactive Glass Scaffold for Hard Tissue Engineering. Journal of Materials Science-Materials in Medicine, 22, 1195-1203.
http://www.ncbi.nlm.nih.gov/pubmed/21445655
http://dx.doi.org/10.1007/s10856-011-4297-4
[53] Wang, S.J. and Jain, H. (2010) High Surface Area Nano-Macroporous Bioactive Glass Scaffold for Hard Tissue Engineering. Journal of the American Ceramic Society, 93, 3002-3005.
http://dx.doi.org/10.1111/j.1551-2916.2010.03970.x
[54] Hamid, R., Rotshteyn, Y., Rabadi, L., Parikh, R. and Bullock, P. (2004) Comparison of Alamar Blue and MTT Assays for High Through-Put Screening. Toxicology in Vitro, 18, 703-710.
http://dx.doi.org/10.1016/j.tiv.2004.03.012
[55] Benesch, J., Mano, J.F. and Reis, R.L. (2008) Proteins and Their Peptide Motifs in Acellular Apatite Mineralization of Scaffolds for Tissue Engineering. Tissue Engineering Part B-Reviews, 14, 433-445.
http://dx.doi.org/10.1089/ten.teb.2008.0121
[56] Takeuchi, A., Ohtsuki, C., Kamitakahara, M., Ogata, S.-I., Miyazaki, T. and Tanihara, M. (2008) Biomimetic Deposition of Hydroxyapatite on a Synthetic Polypeptide with Beta Sheet Structure in a Solution Mimicking Body Fluid. Journal of Materials Science: Materials in Medicine, 19, 387-393.
http://www.ncbi.nlm.nih.gov/pubmed/17607510
http://dx.doi.org/10.1007/s10856-007-3179-2
[57] Lian, J.B., Javed, A., Zaidi, S.K., Lengner, C., Montecino, M., van Wijnen, A.J., et al. (2004) Regulatory Controls for Osteoblast Growth and Differentiation: Role of Runx/Cbfa/AML Factors. Critical Reviews in Eukaryotic Gene Expression, 14, 1-41.
http://www.ncbi.nlm.nih.gov/pubmed/15104525
[58] Ducy, P., Geoffroy, V. and Karsenty, G. (1996) Study of Osteoblast-Specific Expression of one Mouse Osteocalcin Gene: Characterization of the Factor Binding to OSE2. Connective Tissue Research, 35, 7-14.
http://www.ncbi.nlm.nih.gov/pubmed/9084638
http://dx.doi.org/10.3109/03008209609029169
[59] Gaur, T., Lengner, C.J., Hovhannisyan, H., Bhat, R.A., Bodine, P.V.N., Komm, B.S., et al. (2005) Canonical WNT Signaling Promotes Osteogenesis by Directly Stimulating Runx2 Gene Expression. Journal of Biological Chemistry, 280, 33132-33140.
http://www.ncbi.nlm.nih.gov/pubmed/16043491
http://dx.doi.org/10.1074/jbc.m500608200
[60] Hanada, K., Dennis, J.E. and Caplan, A.I. (1997) Stimulatory Effects of Basic Fibroblast Growth Factor and Bone Morphogenetic Protein-2 on Osteogenic Differentiation of Rat Bone Marrow-Derived Mesenchymal Stem Cells. Jour- nal of Bone and Mineral Research, 12, 1606-1614.
http://www.ncbi.nlm.nih.gov/pubmed/9333121
http://dx.doi.org/10.1359/jbmr.1997.12.10.1606
[61] Banerjee, C., Javed, A., Choi, J.Y., Green, J., Rosen, V., van Wijnen, A.J., et al. (2001) Differential Regulation of the Two Principal Runx2/Cbfa1 N-Terminal Isoforms in Response to Bone Morphogenetic Protein-2 during Development of the Osteoblast Phenotype. Endocrinology, 142, 4026-4039.
http://www.ncbi.nlm.nih.gov/pubmed/11517182
http://dx.doi.org/10.1210/endo.142.9.8367
[62] Ito, Y. and Miyazono, K. (2003) RUNX Transcription Factors as Key Targets of TGF-Beta Superfamily Signaling. Current Opinion in Genetics & Development, 13, 43-47.
http://dx.doi.org/10.1016/S0959-437X(03)00007-8
[63] Hoffmann, A., Preobrazhenska, O., Wodarczyk, C., Medler, Y., Winkel, A., Shahab, S., et al. (2005) Transforming Growth Factor-Beta-Activated Kinase-1 (TAK1), a MAP3K, Interacts with Smad Proteins and Interferes with Osteogenesis in Murinemesenchymal Progenitors. Journal of Biological Chemistry, 280, 27271-27283.
http://dx.doi.org/10.1074/jbc.M503368200
[64] Li, J., Tsuji, K., Komori, T., Miyazono, K., Wrana, J.L., Ito, Y., et al. (1998) Smad2 Overexpression Enhances Smad4 Gene Expression and Suppresses CBFA1 Gene Expression in Osteoblasticosteosarcoma ROS17/2.8 Cells and Primary Rat Calvaria Cells. Journal of Biological Chemistry, 273, 31009-31015.
http://dx.doi.org/10.1074/jbc.273.47.31009
[65] Stein, G.S. and Lian, J.B. (1993) Molecular Mechanisms Mediating Proliferation Differentiation Interrelationships during Progressive Development of the Osteoblast Phenotype. Endocrine Reviews, 14, 424-442.
http://www.ncbi.nlm.nih.gov/pubmed/8223340
http://dx.doi.org/10.1210/edrv-14-4-424
[66] Stein, G.S. and Lian, J.B. (1993) Cellular and Molecular Biology of Bone. Academic Press, San Diego.