[1] Bayerl, T., Geith, M., Somashekar, A.A. and Bhattacharyya, D. (2014) Influence of Fibre Architecture on the Biodegradability of FLAX/PLA Composites. International Biodeterioration & Biodegradation, 96, 18-25.
[2] Bax, B. and Müssig, J. (2008) Impact and Tensile Properties of PLA/Cordenka and PLA/Flax Composites. Composites Science and Technology, 68, 1601-1607.
http://dx.doi.org/10.1016/j.compscitech.2008.01.004
[3] Oza, S., Ning, H.B., Ferguson, I. and Lu, N. (2014) Effect of Surface Treatment on Thermal Stability of the Hemp- PLA Composites: Correlation of Activation Energy with Thermal Degradation. Composites Part B: Engineering, 67, 227-232.
[4] Baghaei, B., Skrifvars, M. and Berglin, L. (2013) Manufacture and Characterisation of Thermoplastic Composites Made from PLA/Hemp Co-Wrapped Hybrid Yarn Prepregs. Composites Part A: Applied Science and Manufacturing, 50, 93-101.
[5] Jandas, P.J., Mohanty, S. and Nayak, S.K. (2013) Surface Treated Banana Fiber Reinforced Poly (Lactic Acid) Nanocomposites for Disposable Applications. Journal of Cleaner Production, 52, 392-401.
http://dx.doi.org/10.1016/j.jclepro.2013.03.033
[6] Rajesh, G. and Ratna Prasad, A.V. (2014) Tensile Properties of Successive Alkali Treated Short Jute Fiber Reinforced PLA Composites. Procedia Materials Science, 5, 2188-2196.
[7] Goriparthi, B.K., Suman, K.N.S. and Rao, N.M. (2012) Effect of Fiber Surface Treatments on Mechanical and Abrasive Wear Performance of Polylactide/Jute Composites. Composites Part A: Applied Science and Manufacturing, 43, 1800-1808.
[8] Yu, T. and Li, Y. (2014) Influence of Poly(butylenesadipate-co-terephthalate) on the Properties of the Biodegradable Composites Based on Ramie/Poly(lactic acid). Composites Part A: Applied Science and Manufacturing, 58, 24-29.
http://dx.doi.org/10.1016/j.compositesa.2013.11.013
[9] Shukor, F., Hassan, A., Islam, Md.S., Mokhtar, M. and Hasan, M. (2014) Effect of Ammonium Polyphosphate on Flame Retardancy, Thermal Stability and Mechanical Properties of Alkali Treated Kenaf Fiber Filled PLA Biocomposites. Materials & Design, 54, 425-429.
[10] Saba, N., Paridah, M.T. and Jawaid, M. (2015) Mechanical Properties of Kenaf Fibre Reinforced Polymer Composite: A Review. Construction and Building Materials, 76, 87-96.
http://dx.doi.org/10.1016/j.conbuildmat.2014.11.043
[11] Ebnesajjad, S. (2012) Handbook of Biopolymers and Biodegradable Plastics. Fluoroconsultants Group, Chadds Ford, Pennsylvania.
[12] Zhao, H.B., Cui, Z.X., Wang, X.F., Turng, L.-S. and Peng, X.F. (2013) Processing and Characterization of Solid and Microcellular Poly(lacticacid)/Polyhydroxybutyrate-Valerate (PLA/PHBV) Blends and PLA/PHBV/Clay Nanocomposites. Composites Part B: Engineering, 51, 79-91.
[13] Testa, G., Sardella, A., Rossi, E., Bozzi, C. and Seves, A. (1994) The Kinetics of Cellulose Fiber Degradation and Correlation with Some Tensile Properties. Acta Polymer, 45, 47-49.
http://dx.doi.org/10.1002/actp.1994.010450109
[14] Ochi, S. (2002) Mechanical Properties of Heat-Treated Natural Fibers. Proceedings of High Performance Structures and Composites, 4, 117-125.
[15] Gassan, J. and Bledzki, A.K. (2001) Thermal Degradation of Flax and Jute Fibers. Journal of Applied Polymer Science, 82, 1417-1422.
http://dx.doi.org/10.1002/app.1979
[16] Porras, A. and Maranon, A. (2012) Development and Characterization of a Laminate Composite Material from Polylactic Acid (PLA) and Woven Bamboo Fabric. Composites Part B: Engineering, 43, 2782-2788.
http://dx.doi.org/10.1016/j.compositesb.2012.04.039
[17] Verma, C.S., Sharma, N.K., Chariar, V.M., Maheshwari, S. and Hada, M.K. (2014) Comparative Study of Mechanical Properties of Bamboo Laminae and Their Laminates with Woods and Wood Based Composites. Composites Part B: Engineering, 60, 523-530.
http://dx.doi.org/10.1016/j.compositesb.2013.12.061
[18] Osswald, T.A. and Menges, G. (2003) Materials Science of Polymers for Engineers. HanserGrderPubns, Germany.
[19] Hull, D. and Clyne, T.W. (1996) An Introduction to Composite Materials. 2nd Edition, Cambridge University Press, Cambridge.