JMP  Vol.6 No.7 , June 2015
Relation between FQHE Plateau Width and Valley Energy
Author(s) Shosuke Sasaki
ABSTRACT
We have investigated the Fractional Quantum Hall Effect (FQHE) on the fundamental Hamiltonian with the Coulomb interactions between normal electrons without any quasi particle. The electron pairs placed in the Landau orbitals can transfer to many empty orbitals. The number of the quantum transitions decreases discontinuously when the filling factor v deviates from the specific fractional number of v0. The discontinuous decreasing produces the energy valley at the specific filling factors v0 = 2/3, 4/5, 3/5, 4/7, 3/7, 2/5, 1/3 and so on. The diagonal elements of the total Hamiltonian and the number of the quantum transitions give the total energy of the FQH states. The energy per electron has the discontinuous spectrum depending on the filling factor v. We obtain the function form of the energy per electron in the quantum Hall system. Then the theoretical Hall resistance curve is calculated near several filling factors. Therein the quantum Hall plateaus are derived from the energy valleys. The depths of the energy valleys are compared with the widths of the quantum Hall plateaus appearing in the experimental data of the Hall resistance. Our theoretical results are in good agreement with the experimental results.

Cite this paper
Sasaki, S. (2015) Relation between FQHE Plateau Width and Valley Energy. Journal of Modern Physics, 6, 955-971. doi: 10.4236/jmp.2015.67100.
References
[1]   Sasaki, S. (2000) Binding Energy, Polarization of Fractional Quantum Hall State. Proceedings of the 25th International Conference on the Physics of Semiconductors, Part II, Osaka, 17-22 September 2000, Springer, 925-926.

[2]   Sasaki, S. (2000) Physica B: Condensed Matter, 281-282, 838-839.
http://dx.doi.org/10.1016/S0921-4526(99)00840-6

[3]   Sasaki, S. (2003) Surface Science, 532-535, 567-575.
http://dx.doi.org/10.1016/S0039-6028(03)00091-8

[4]   Sasaki, S. (2004) Surface Science, 566-568, 1040-1046. http://dx.doi.org/10.1016/j.susc.2004.06.101

[5]   Sasaki, S. (2005) Binding Energies and Spin Polarizations of Fractional Quantum Hall States, In: Norris, C.P., Ed., Surface Science: New Research, Nova Science Publishers, New York, 103-161.

[6]   Sasaki, S. (2008) Journal of Physics, 100, Article ID: 042021.
http://dx.doi.org/10.1088/1742-6596/100/4/042021

[7]   Sasaki, S. (2008) Journal of Physics, 100, Article ID: 042022. http://dx.doi.org/10.1088/1742-6596/100/4/042022

[8]   Sasaki, S. (2010) Journal of Surface Science and Nanotechnology, 8, 121-124.
http://dx.doi.org/10.1380/ejssnt.2010.121

[9]   Sasaki, S. (2012) Advances in Condensed Matter Physics, 2012, Article ID: 281371.
http://dx.doi.org/10.1155/2012/281371

[10]   Sasaki, S. (2013) Journal of Modern Physics, 4, 1-7. http://dx.doi.org/10.4236/jmp.2013.49A001

[11]   Sasaki, S. (2013) ISRN Condensed Matter Physics, 2013, Article ID: 489519.
http://dx.doi.org/10.1155/2013/489519

[12]   Sasaki, S. (2014) ISRN Condensed Matter Physics, 2014, Article ID: 468130.
http://dx.doi.org/10.1155/2014/468130

[13]   Sasaki, S. (2015) Journal of Modern Physics, 6, 584-600. http://dx.doi.org/10.4236/jmp.2015.65064

[14]   Sasaki, S. (2015) Journal of Modern Physics, 6, 794-810. http://dx.doi.org/10.4236/jmp.2015.66085

[15]   Halperin, B.I. (1984) Physical Review Letters, 52, 1583-1586.
http://dx.doi.org/10.1103/PhysRevLett.52.1583

[16]   Stormer, H.L. (1999) Reviews of Modern Physics, 71, 875-889.
http://dx.doi.org/10.1103/RevModPhys.71.875

[17]   Pan, W., Stormer, H.L., Tsui, D.C., Pfeiffer, L.N., Baldwin, K.W. and West, K.W. (2002) Physical Review Letters, 88, Article ID: 176802. http://dx.doi.org/10.1103/PhysRevLett.88.176802

[18]   Pan, W., Stormer, H.L., Tsui, D.C., Pfeiffer, L.N., Baldwin, K.W. and West, K.W. (2003) Physical Review Letters, 90, Article ID: 016801. http://dx.doi.org/10.1103/PhysRevLett.90.016801

[19]   Tsui, D.C. and Gossard, A.C. (1981) Applied Physics Letters, 38, 550.
http://dx.doi.org/10.1063/1.92408

[20]   Tsui, D.C., Störmer, H.L. and Gossard, A.C. (1982) Physical Review B, 25, 1405-1407.
http://dx.doi.org/10.1103/PhysRevB.25.1405

[21]   Tsui, D.C., Stormer, H.L. and Gossard, A.C. (1982) Physical Review Letters, 48, 1559-1562.
http://dx.doi.org/10.1103/PhysRevLett.48.1559

[22]   Willet, R., Eisenstein, J.P., Stormer, H.L., Tsui, D.C., Gossard, A.C. and English, J.H. (1987) Physical Review Letters, 59, 1776-1779. http://dx.doi.org/10.1103/PhysRevLett.59.1776

[23]   Eisenstein, J.P. and Stormer, H.L. (1990) Science, 248, 1510-1516.
http://dx.doi.org/10.1126/science.248.4962.1510

[24]   Stormer, H.L. (2002) Nobel Lectures, Physics 1996-2000. World Scientific, Singapore, 295-325.

[25]   Novoselov, K.S., Jiang, Z., Zhang, Y., Morozov, S.V., Stormer, H.L., Zeitler, U., Maan, J.C., Boebinger, G.S., Kim, P. and Geim, A.K. (2007) Science, 315, 1379. http://dx.doi.org/10.1126/science.1137201

[26]   Laughlin, R.B. (1983) Physical Review B, 27, 3383-3389. http://dx.doi.org/10.1103/PhysRevB.27.3383

[27]   Laughlin, R.B. (1983) Physical Review Letters, 50, 1395-1398.
http://dx.doi.org/10.1103/PhysRevLett.50.1395

[28]   Haldane, F.D.M. (1983) Physical Review Letters, 51, 605-608.
http://dx.doi.org/10.1103/PhysRevLett.51.605

[29]   Girvin, S.M. (1984) Physical Review B, 29, 6012-6014. http://dx.doi.org/10.1103/PhysRevB.29.6012

[30]   Jain, J.K. (2014) Indian Journal of Physics, 88, 915-929. http://dx.doi.org/10.1007/s12648-014-0491-9

[31]   Jain, J.K. (2007) Composite Fermions. Cambridge University Press., New York.
http://dx.doi.org/10.1017/CBO9780511607561

[32]   Das Sarma, S. (1996) Localization, Metal-Insulator Transitions, and Quantum Hall Effect. In: Das Sarma, S. and Pinczuk, A., Eds., Perspectives in Quantum Hall Effects: Novel Quantum Liquids in Low-Dimensional Semiconductor Structures, Wiley, New York, 1-36.
http://dx.doi.org/10.1002/9783527617258.ch1

[33]   Jain, J.K. and Kamilla, R.K. (1998) Composite Fermions: Particles of the Lowest Landau Level. In: Heinonen, O., Ed., Composite Fermions: A Unified View of the Quantum Hall Regime, World Scientific, New York, 1-90. http://dx.doi.org/10.1142/9789812815989_0001

[34]   Jain, J.K. (1989) Physical Review Letters, 63, 199-202. http://dx.doi.org/10.1103/PhysRevLett.63.199

[35]   Kamilla, R.K., Wu, X.G. and Jain, J.K. (1996) Physical Review Letters, 76, 1332-1335.
http://dx.doi.org/10.1103/PhysRevLett.76.1332

[36]   Jain, J.K. and Kamilla, R.K. (1997) Physical Review B, 55, R4895-R4898.
http://dx.doi.org/10.1103/PhysRevB.55.R4895

[37]   Park, K. and Jain, J.K. (1998) Physical Review Letters, 80, 4237-4240.
http://dx.doi.org/10.1103/PhysRevLett.80.4237

[38]   Jain, J.K. (2000) Physics Today, 53, 39-45. http://dx.doi.org/10.1063/1.883035

[39]   Halperin, B.I. (2003) Physica E: Low-Dimensional Systems and Nanostructures, 20, 71-78. http://dx.doi.org/10.1016/j.physe.2003.09.022

[40]   Murthy, G. and Shankar, R. (2003) Reviews of Modern Physics, 75, 1101-1158.
http://dx.doi.org/10.1103/RevModPhys.75.1101

[41]   Sitko, P., Yi, K.-S. and Quinn, J.J. (1997) Physical Review B, 56, 12417-12421.
http://dx.doi.org/10.1103/PhysRevB.56.12417

 
 
Top