FNS  Vol.2 No.5 , July 2011
Proximate Composition and Fatty Acid Profile of Raw and Roasted Salt-Dried Sardines (Sardinella Brasiliensis)
Abstract: The proximate composition and fatty acid profile of five lots of samples of raw and roasted salt-dried sardines (Sardi-nella brasiliensis) bought locally in Maringá, Paraná State, Brazil were determined. Significant differences (P < 0.05) were observed between samples of raw and roasted sardines, both in relation to moisture, total lipids, proteins, and ashes. The major fatty acids in raw and roasted sardine samples were docosahexaenoic acid (DHA, 22: 6n-3, 35.98%, 12.46%); palmitic acid (16: 0, 37.59%; 24.18%), and eicosapentaenoic acid (EPA, 20: 5n-3, 6.62%; 2.95%), respec-tively. The ratios of polyunsaturated to saturated fatty acid (PUFA/SFA) were 1.32 and 0.33, and the n-6/n-3 ratios were 0.07 and 0.13 in raw and roasted sardines, respectively. The results showed that roasting increased the SFA and reduced the PUFA in sardines, which still were rich in PUFA and remained a low-cost and nutritionally healthy food.
Cite this paper: nullM. Bulla, J. Simionato, M. Matsushita, F. Coró, M. Shimokomaki, J. Visentainer and N. Souza, "Proximate Composition and Fatty Acid Profile of Raw and Roasted Salt-Dried Sardines (Sardinella Brasiliensis)," Food and Nutrition Sciences, Vol. 2 No. 5, 2011, pp. 440-443. doi: 10.4236/fns.2011.25062.

[1]   M. Vasconcellos, “An Analysis of Harvest Strategies and Information Needs in the Purse Seine Fishery for the Brazilian Sardine,” Fisheries Research, Vol. 59, No. 3, 2003, pp. 363-378. doi:10.1016/S0165-7836(02)00026-7

[2]   Acqua Forum 2007.

[3]   C. R. T. Tarley, J. V. Visentainer, M. Matsushita and N. E. de Souza, “Proximate Composition, Cholesterol and Fatty Acids Profile of Canned Sardines (Sardinella Brasiliensis) in Soybean Oil and Tomato Sauce,” Food Chemistry, Vol. 88, No. 1, 2004, pp. 1-6. doi:10.1016/j.foodchem.2004.01.016

[4]   A. D. Andrade, A. F. Rubira, M. Matsushita and N. E. Souza, “N-3 Fatty Acids in Feshwater Fish from South Brazil,” Journal of American Oil Chemical Society, Vol. 72, No. 10, 1995, pp. 1207-1210. doi:10.1007/BF02540990

[5]   L. D. Peterson, N. N. Jeffery, F. Thies, P. Sanderson, E. A. Newsholme and P. C. Calder, “Eicosapentaenoic and Docosahexaenoic Acids Alter Rat Spleen Leukocyte Fatty Acid Composition and Prostaglandin and Production But Have Different Effects on Lymphocyte Functions and Cell Mediated Immunity,” Lipids, Vol. 33, No. 2, 1998, pp. 171-180. doi:10.1007/s11745-998-0193-y

[6]   B. J. Hunter and D. C. K. Roberts, “Potencial Impact of the Fat Composition of Farmed Fish on Human Health,” Nutrition Research, Vol. 20, No. 7, 2000, pp. 1047-1058. doi:10.1016/S0271-5317(00)00181-0

[7]   C. von Schacky, “N-3 Fatty Acids and the Prevention of Coronary Atherosclerosis,” American Journal of Clinical Nutrition, Vol. 71, No. 1, 2000, pp. 224S-227S.

[8]   R. Uauy and A. Valenzuela, “Marine Oils: The Health Benefits of n-3 Fatty Acids,” Nutrition, Vol. 16, No. 7, 2000, pp. 680-684.

[9]   A. P. Simopoulos, “Essentiality and Recommended Dietary Intakes for Omega-6 and Omega-3 Fatty Acids,” Annals of Nutrition and Metabolism, Vol. 43, No. 2, 1999, pp. 127-130. doi:10.1159/000012777

[10]   J. A. Conquer, J. B. Martin, I. Tummon, L. Watson and F. Tekpetey, “Effetct of DHA Supplementation on DHA Status and Sperm Motility in Asthenozoospermic Males,” Lipids, Vol. 35, No. 2, 2000, pp. 149-154. doi:10.1007/BF02664764

[11]   C. A. Martin, V. V. Almeida, M. R. Ruiz, J. E. L. Visentainer, M. Matshushita, N. E. de Souza and J. V. Visentainer, “Omega-3 and Omega-6 Polyunsaturated Fatty Acids: Importance and Occurrence in Foods,” Revista de Nutri??o, Vol. 19, No. 6, 2006, pp. 761-770.

[12]   E. R. Szenttamásy, S. M. V. B. Barbosa, M. Oetterer and I. A. M. Moreno, “Tecnologia Do Pescado De água Doce: Aproveitamento Do Pacu (Piaractus Mesopotamicus),” Scientia Agricola, Vol. 50, No. 2, 1993, pp. 303-310.

[13]   P. A. Cunniff, “Official Methods of Analysis of AOAC International,” 16th Edition, Association of Official Analysis Chemists, Arlington, 1998.

[14]   E. G. Bligh and W. J. Dyer, “A Rapid Method of Total Lipid Extraction and Purification,” Canadian Journal of Biochemistry, Vol. 37, 1959, pp. 911-917. doi:10.1139/o59-099

[15]   L. Hartman and R. C. A. Lago, “Rapid Preparation of Fatty Acid Methyl from Lipids,” Laboratory Practice, Vol. 22, 1973, pp. 475-481.

[16]   NEPA-UNICAMP, “TACO (Brazilian Food Composition Table),” Coordinated by the Center for Studies and Re-Searches in Food (NEPA) of UNICAMP and Established by the Ministry of Health (MS), Campinas, 2009.

[17]   A. A. F. Pereira and A. Tenuta-Filho, “Avalia??o de condi??es de consumo da sardinha Sardinella brasiliensis,” Ciência e Tecnologia de Alimentos, Vol. 25, No. 4, 2005, pp. 720-725. doi:10.1590/S0101-20612005000400015

[18]   J. V. Visentainer, M. D. Noffs, P. O. Carvalho, V. V. Almeida, C. C. Oliveira and N. E. Souza, “Lipid Content and Fatty Acid Composition of 15 Marine Fish Species from the Southeast Coast of Brazil,” Journal of the American Oil Chemists’ Society, Vol. 84, No. 6, 2007, pp. 543-547.

[19]   J. V. Visentainer, P. O. Carvalho, M. Ikegaki and Y. K. Park, “Concentra??o de ácido eicosapentaenóico (EPA) e ácido docosahexaenóico (DHA) em peixes marinhos da costa brasileira,” Ciência e Tecnologia de Alimentos, Vol. 20, No. 1, 2000, pp. 90-93. doi:10.1590/S0101-20612000000100017

[20]   A. G. Silva Sobrinho, N. M. B. L. Zeola, H. B. A. Souza and T. M. A. Lima, “Qualidade Da Carne Ovina Submetida Ao Processo De Salga,” Ciência e Tecnologia de Alimentos, Vol. 24, No. 3, 2004, pp. 369-372. doi:10.1590/S0101-20612004000300011

[21]   HMSO, Report on Health and Social Subjects, Department of Health, Nutritional Aspects of Cardiovascular Disease, London, Vol. 46, 2001, pp. 37-46.