AiM  Vol.5 No.6 , June 2015
Dissemination and Genetic Structure of Carbapenemase Encoding Genes (blaOXA-23 and blaOXA-24) in Acinetobacter baumannii from Southern Texas
Acinetobacter baumannii is one of the most important human pathogens causing a variety of nosocomial infections. Carbapenem antibiotics have been primarily used to treat the A. baumannii infections. However, carbapenem resistant A. baumannii producing carbapenemases causes serious treatment problems worldwide. Outbreaks of carbapenem resistant isolates have reported in some area of the United States, but their dissemination and genetic structure of the carbapenemase encoding genes are currently little known. To understand outbreaks, dissemination, and genetic structure of the carbapenemase encoding genes in Southern Texas, 32 clinical isolates collected from Austin and Houston, TX were characterized. Twenty-eight of 32 isolates were resistant to all tested β-lactam antibiotics including carbapenem (imipenem and meropenem). Three of them carried blaOXA-23 as a part of Tn2008 integrated into a known plasmid (pACICU2) and all others carried blaOXA-24 flanked by XerC/XerD-like recombinase binding sites that were adjoined by DNA sequences originated from multiple plasmids. Genotype analysis revealed that the 25 isolates carrying blaOXA-24 were all identical genotypes same as a representative isolate carrying blaOXA-24 from Chicago, IL but the 3 isolates carrying blaOXA-23 was a distinct genotype as compared with isolates carrying blaOXA-23 from Chicago, IL and Washington, D.C. Each of the blaOXA-23 and blaOXA-24 was transferred to carbapenem susceptible A. baumannii and E. coli with similar minimal inhibitory concentration (MIC) of carbapenem as that of their parental isolates but significantly lower levels of MIC in E. coli. Overall results suggest that a unique strain carrying blaOXA-23 and a similar strain carrying blaOXA-24 as seen in other geographic areas are currently disseminated in Southern Texas.

Cite this paper
Azam, N. , Talukder, T. , Robinson, K. and Kwon, D. (2015) Dissemination and Genetic Structure of Carbapenemase Encoding Genes (blaOXA-23 and blaOXA-24) in Acinetobacter baumannii from Southern Texas. Advances in Microbiology, 5, 457-468. doi: 10.4236/aim.2015.56047.
[1]   Woodford, N., Ellington, M.J., Coelho, J.M., Turton, J.F., Ward, M.E., Brown, S., et al. (2006) Multiplex PCR for Genes Encoding Prevalent OXA Carbapenemases in Acinetobacter spp. International Journal of Antimicrobial Agents, 27, 351-353.

[2]   Peleg, A.Y., Seifert, H. and Paterson, D.L. (2008) Acinetobacter baumannii: Emergence of a Successful Pathogen. Clinical Microbiology Reviews, 21, 538-582.

[3]   Giamarellou, H., Antoniadou, A. and Kanellakopoulou, K. (2008) Acinetobacter baumannii: A Universal Threat to Public Health? International Journal of Antimicrobial Agents, 32, 106-119.

[4]   Viehman, J.A., Nguyen, M.H. and Doi, Y. (2014) Treatment Options for Carbapenem-Resistant and Extensively Drug-Resistant Acinetobacter baumannii Infections. Drugs, 74, 1315-1333.

[5]   Hackel, M.A., Badal, R.E., Bouchillon, S.K., Biedenbach, D.J. and Hoban, D.J. (2015) Resistance Rates of Intra-Abdominal Isolates from Intensive Care Units and Non-Intensive Care Units in the United States: The Study for Monitoring Antimicrobial Resistance Trends 2010-2012. Surgical Infections, 16, 298-304.

[6]   Zarrilli, R., Giannouli, M., Tomasone, F., Triassi, M. and Tsakris, A. (2009) Carbapenem Resistance in Acinetobacter baumannii: The Molecular Epidemic Features of an Emerging Problem in Health Care Facilities. Journal of Infection in Developing Countries, 3, 335-341.

[7]   Robledo, I.E., Aquino, E.E., Sante, M.I., Santana, J.L., Otero, D.M., Leon, C.F., et al. (2010) Detection of KPC in Acinetobacter spp. in Puerto Rico. Antimicrobial Agents and Chemotherapy, 54, 1354-1357.

[8]   Turton, J.F., Ward, M.E., Woodford, N., Kaufmann, M.E., Pike, R., Livermore, D.M., et al. (2006) The Role of ISAba1 in Expression of OXA Carbapenemase Genes in Acinetobacter baumannii. FEMS Microbiology Letters, 258, 72-77.

[9]   Durante-Mangoni, E. and Zarrilli, R. (2011) Global Spread of Drug-Resistant Acinetobacter baumannii: Molecular Epidemiology and Management of Antimicrobial Resistance. Future Microbiology, 6, 407-422.

[10]   Go, E.S., Urban, C., Burns, J., Kreiswirth, B., Eisner, W., Mariano, N., et al. (1994) Clinical and Molecular Epidemiology of Acinetobacter Infections Sensitive Only to Polymyxin B and Sulbactam. Lancet, 344, 1329-1332.

[11]   Bratu, S., Landman, D., Martin, D.A., Georgescu, C. and Quale, J. (2008) Correlation of Antimicrobial Resistance with Beta-Lactamases, the OmpA-Like Porin, and Efflux Pumps in Clinical Isolates of Acinetobacter baumannii Endemic to New York City. Antimicrobial Agents and Chemotherapy, 52, 2999-3005.

[12]   Lolans, K., Rice, T.W., Munoz-Price, L.S. and Quinn, J.P. (2006) Multicity Outbreak of Carbapenem-Resistant Acinetobacter baumannii Isolates Producing the Carbapenemase OXA-40. Antimicrobial Agents and Chemotherapy, 50, 2941-2945.

[13]   Tian, G.B., Adams-Haduch, J.M., Bogdanovich, T., Pasculle, A.W., Quinn, J.P., Wang, H.N., et al. (2011) Identification of Diverse OXA-40 Group Carbapenemases, Including a Novel Variant, OXA-160, from Acinetobacter baumannii in Pennsylvania. Antimicrobial Agents and Chemotherapy, 55, 429-432.

[14]   Castanheira, M., Wanger, A., Kruzel, M., Deshpande, L.M. and Jones, R.N. (2008) Emergence and Clonal Dissemination of OXA-24- and OXA-58-Producing Acinetobacter baumannii Strains in Houston, Texas: Report from the SENTRY Antimicrobial Surveillance Program. Journal of Clinical Microbiology, 46, 3179-3180.

[15]   Hujer, K.M., Hujer, A.M., Hulten, E.A., Bajaksouzian, S., Adams, J.M., Donskey, C.J., et al. (2006) Analysis of Antibiotic Resistance Genes in Multidrug-Resistant Acinetobacter sp. Isolates from Military and Civilian Patients Treated at the Walter Reed Army Medical Center. Antimicrobial Agents and Chemotherapy, 50, 4114-4123.

[16]   Adams, M.D., Goglin, K., Molyneaux, N., Hujer, K.M., Lavender, H., Jamison, J.J., et al. (2008) Comparative Genome Sequence Analysis of Multidrug-Resistant Acinetobacter baumannii. Journal of Bacteriology, 190, 8053-8064.

[17]   Higgins, P.G., Wisplinghoff, H., Krut, O. and Seifert, H. (2007) A PCR-Based Method to Differentiate between Acinetobacter baumannii and Acinetobacter Genomic Species 13TU. Clinical Microbiology and Infection, 13, 1199-1201.

[18]   Kwon, D.H. and Lu, C.D. (2007) Polyamine Effects on Antibiotic Susceptibility in Bacteria. Antimicrobial Agents and Chemotherapy, 51, 2070-2077.

[19]   Ellington, M.J., Kistler, J., Livermore, D.M. and Woodford, N. (2007) Multiplex PCR for Rapid Detection of Genes Encoding Acquired Metallo-Beta-Lactamases. Journal of Antimicrobial Chemotherapy, 59, 321-322.

[20]   Kwon, D.H., El-Zaatari, F.A., Kato, M., Osato, M.S., Reddy, R., Yamaoka, Y., et al. (2000) Analysis of rdxA and Involvement of Additional Genes Encoding NAD(P)H Flavin Oxidoreductase (FrxA) and Ferredoxin-Like Protein (FdxB) in Metronidazole Resistance of Helicobacter pylori. Antimicrobial Agents and Chemotherapy, 44, 2133-2142.

[21]   Kwon, D.H. and Lu, C.D. (2006) Polyamines Increase Antibiotic Susceptibility in Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 50, 1623-1627.

[22]   Smith, M.G., Gianoulis, T.A., Pukatzki, S., Mekalanos, J.J., Ornston, L.N., Gerstein, M., et al. (2007) New Insights into Acinetobacter baumannii Pathogenesis Revealed by High-Density Pyrosequencing and Transposon Mutagenesis. Genes & Development, 21, 601-614.

[23]   Ramirez, M.S., Don, M., Merkier, A.K., Bistue, A.J., Zorreguieta, A., Centron, D., et al. (2010) Naturally Competent Acinetobacter baumannii Clinical Isolate as a Convenient Model for Genetic Studies. Journal of Clinical Microbiology, 48, 1488-1490.

[24]   Sarno, R., McGillivary, G., Sherratt, D.J., Actis, L.A. and Tolmasky, M.E. (2002) Complete Nucleotide Sequence of Klebsiella pneumoniae Multiresistance Plasmid pJHCMW1. Antimicrobial Agents and Chemotherapy, 46, 3422-3427.

[25]   Bou, G., Cervero, G., Dominguez, M.A., Quereda, C. and Martinez-Beltran, J. (2000) PCR-Based DNA Fingerprinting (REP-PCR, AP-PCR) and Pulsed-Field Gel Electrophoresis Characterization of a Nosocomial Outbreak Caused by Imipenem- and Meropenem-Resistant Acinetobacter baumannii. Clinical Microbiology and Infection, 6, 635-643.

[26]   Adams-Haduch, J.M., Paterson, D.L., Sidjabat, H.E., Pasculle, A.W., Potoski, B.A., Muto, C.A., et al. (2008) Genetic Basis of Multidrug Resistance in Acinetobacter baumannii Clinical Isolates at a Tertiary Medical Center in Pennsylvania. Antimicrobial Agents and Chemotherapy, 52, 3837-3843.

[27]   Zavascki, A.P., Goldani, L.Z., Li, J. and Nation, R.L. (2007) Polymyxin B for the Treatment of Multidrug-Resistant Pathogens: A Critical Review. Journal of Antimicrobial Chemotherapy, 60, 1206-1215.

[28]   Adams, M.D., Nickel, G.C., Bajaksouzian, S., Lavender, H., Murthy, A.R., Jacobs, M.R., et al. (2009) Resistance to Colistin in Acinetobacter baumannii Associated with Mutations in the PmrAB Two-Component System. Antimicrobial Agents and Chemotherapy, 53, 3628-3634.

[29]   Moffatt, J.H., Harper, M., Harrison, P., Hale, J.D., Vinogradov, E., Seemann, T., et al. (2010) Colistin Resistance in Acinetobacter baumannii is Mediated by Complete Loss of Lipopolysaccharide Production. Antimicrobial Agents and Chemotherapy, 54, 4971-4977.

[30]   Higgins, P.G., Dammhayn, C., Hackel, M. and Seifert, H. (2010) Global Spread of Carbapenem-Resistant Acinetobacter baumannii. Journal of Antimicrobial Chemotherapy, 65, 233-238.

[31]   Perez, F., Endimiani, A., Ray, A.J., Decker, B.K., Wallace, C.J., Hujer, K.M., et al. (2010) Carbapenem-Resistant Acinetobacter baumannii and Klebsiella pneumoniae across a Hospital System: Impact of Post-Acute Care Facilities on Dissemination. Journal of Antimicrobial Chemotherapy, 65, 1807-1818.

[32]   Iacono, M., Villa, L., Fortini, D., Bordoni, R., Imperi, F., Bonnal, R.J., et al. (2008) Whole-Genome Pyrosequencing of an Epidemic Multidrug-Resistant Acinetobacter baumannii Strain Belonging to the European Clone II Group. Antimicrobial Agents and Chemotherapy, 52, 2616-2625.

[33]   Mengoni, A., Ricci, S., Brilli, M., Baldi, F. and Fani, R. (2007) Sequencing and Analysis of Plasmids pAV1 and pAV2 of Acinetobacter venetianus VE-C3 Involved in Disel Fuel Degradation. Annals of Microbiology, 57, 521-526.

[34]   Vallenet, D., Nordmann, P., Barbe, V., Poirel, L., Mangenot, S., Bataille, E., et al. (2008) Comparative Anaysis of Acinetobacters: Three Genomes for Three Lifestyles. PLoS ONE, 3, e1805.

[35]   D’Andrea, M.M., Giani, T., D’Arezzo, S., Capone, A., Petrosillo, N., Visca, P., et al. (2009) Characterization of pABVA01, a Plasmid Encoding the OXA-24 Carbapenemase from Italian Isolates of Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 53, 3528-3533.

[36]   Mugnier, P.D., Poirel, L., Naas, T. and Nordmann, P. (2010) Worldwide Dissemination of the blaOXA-23 Carbapenemase Gene of Acinetobacter baumannii. Emerging Infectious Diseases, 16, 35-40.

[37]   Heritier, C., Poirel, L., Lambert, T. and Nordmann, P. (2005) Contribution of Acquired Carbapenem-Hydrolyzing Oxacillinases to Carbapenem Resistance in Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 49, 3198-3202.