[1] Abe, M., Hiraoka, M., Takahashi, M., Egawa, S., Matsuda, C., Onoyama, Y., Morita, K., Kakehi, M. and Sugahara, T. (1986) Multi-Institutional Studies on Hyperthermia Using an 8-MHz Radiofrequency Capacitive Heating Device (Thermotron RF-8) in Combination with Radiation for Cancer Therapy. Cancer, 58, 1589-1595.
http://dx.doi.org/10.1002/1097-0142(19861015)58:8<1589::AID-CNCR2820580802>3.0.CO;2-B
[2] Oura, S., Tamaki, T., Hirai, I., Yoshimasu, T., Ohta, F., Nakamura, R. and Okamura, Y. (2007) Radiofrequency Ablation Therapy in Patients with Breast Cancers Two Centimeters or Less in Size. Breast Cancer, 14, 48-54.
http://dx.doi.org/10.2325/jbcs.14.48
[3] Seip, R. and Ebbini, E.S. (1995) Noninvasive Estimation of Tissue Temperature Response to Heating Fields Using Diagnostic Ultrasound. IEEE Transactions on Biomedical Engineering, 42, 828-839.
http://dx.doi.org/10.1109/10.398644
[4] Gilchrist, R.K., Medal, R., Shorey, W.D., Hanselman, R.C., Parrott, J.C. and Taylor, C.B. (1957) Selective Inductive Heating of Lymph Nodes. Annals of Surgery, 146, 596-606.
http://dx.doi.org/10.1097/00000658-195710000-00007
[5] Jordan, A., Scholz, R., Maier-Hauff, K., Johannsen, M., Wust, P., Nodobny, J., Schirra, H., Schmidt, H., Deger, S. and Leoning, S. (2001) Presentation of a New Magnetic Field Therapy System for the Treatment of Human Solid Tumors with Magnetic Fluid Hyperthermia. Journal of Magnetism and Magnetic Materials, 225, 118-126.
http://dx.doi.org/10.1016/S0304-8853(00)01239-7
[6] Kozissnik, B., Bohorquez, A.C., Dobson, J. and Rinaldi, C. (2013) Magnetic Fluid Hyperthermia: Advances, Challenges, and Opportunity. International Journal of Hyperthermia, 29, 706-714.
http://dx.doi.org/10.3109/02656736.2013.837200
[7] Hilger, I. (2013) In Vivo Applications of Magnetic Nanoparticle Hyperthermia. International Journal of Hyperthermia, 29, 828-834.
http://dx.doi.org/10.3109/02656736.2013.832815
[8] Rosensweig, R.E. (2002) Heating Magnetic Fluid with Alternating Magnetic Field. Journal of Magnetism and Magnetic Materials, 252, 370-374.
http://dx.doi.org/10.1016/S0304-8853(02)00706-0
[9] Neuberger, T., Schopf, B., Hofmann, H., Hofmann, M. and von Rechenberg, B. (2005) Superparamagnetic Nanoparticles for Biomedical Applications: Possibilities and Limitations of a New Drug Delivery System. Journal of Magnetism and Magnetic Materials, 293, 483-496.
http://dx.doi.org/10.1016/j.jmmm.2005.01.064
[10] Grüttner, C., Müller, K., Teller, J. and Westphal, F. (2013) Synthesis and Functionalization of Magnetic Nanoparticles for Hyperthermia Applications. International Journal of Hyperthermia, 29, 777-789.
http://dx.doi.org/10.3109/02656736.2013.835876
[11] Ito, A., Shinkai, M., Honda, H. and Kobayashi, T. (2005) Medical Applications of Functionalized Magnetic Nanoparticles. Journal of Bioscience and Bioengineering, 100, 1-11.
http://dx.doi.org/10.1263/jbb.100.1
[12] Balivada, S., Rachakatla, R.S., Wang, H., Samarakoon, T.N., Dani, R.K., Pyle, M., Kroh, F.O., Walker, B., Leaym, X., Koper, O.B., Tamura, M., Chikan, V., Bossmann, S.H. and Troyer, D.L. (2010) A/C Magnetic Hyperthermia of Melanoma Mediated by Iron(0)/iron Oxide Core/shell Magnetic Nanoparticles: A Mouse Study. BMC Cancer, 10, 119-127.
http://dx.doi.org/10.1186/1471-2407-10-119
[13] Johannsen, M., Gneueckow, U., Thiesen, B., Taymoorian, K., Cho, C.H., Waldofner, N., Scholz, R., Jordan, A., Loening, S.A. and Wust, P. (2007) Thermotherapy of Prostate Cancer Using Magnetic Nanoparticles: Feasibility, Imaging, and Three-Dimensional Temperature Distribution. European Urology, 52, 1653-1662.
http://dx.doi.org/10.1016/j.eururo.2006.11.023
[14] LeBrun, A., Manuchehrabadi, N., Attaluri, A., Wang, F., Ma, R. and Zhu, L. (2013) MicroCT Image-Generated Tumour Geometry and SAR Distribution for Tumour Temperature Elevation Simulations in Magnetic Nanoparticle Hyperthermia. International Journal of Hyperthermia, 29, 730-738.
http://dx.doi.org/10.3109/02656736.2013.836757
[15] Gleich, B. and Weizenecker, J. (2005) Tomographic Imaging Using the Nonlinear Response of Magnetic Particles. Nature, 435, 1214-1217.
http://dx.doi.org/10.1038/nature03808
[16] Goodwill, P.W., Konkle, J.J., Zheng, B., Saritas, E.U. and Conolly, S.M. (2012) Projection X-Space Magnetic Particle Imaging. IEEE Transactions on Medical Imaging, 31, 1076-1085.
http://dx.doi.org/10.1109/TMI.2012.2185247
[17] Murase, K., Hiratsuka, S., Song, R. and Takeuchi, Y. (2014) Development of a System for Magnetic Particle Imaging using Neodymium Magnets and Gradiometer. Japanese Journal of Applied Physics, 53, Article ID: 067001.
http://dx.doi.org/10.7567/jjap.53.067001
[18] Murase, K., Song, R. and Hiratsuka, S. (2014) Magnetic Particle Imaging of Blood Coagulation. Applied Physics Letters, 104, Article ID: 252409.
http://dx.doi.org/10.1063/1.4885146
[19] Nishimoto, K., Mimura, A., Aoki, M., Banura, N. and Murase, K. (2015) Application of Magnetic Particle Imaging to Pulmonary Imaging Using Nebulized Magnetic Nanoparticles. Open Journal of Medical Imaging, 5, 49-55.
http://dx.doi.org/10.4236/ojmi.2015.52008
[20] Murase, K., Mimura, A., Banura, N., Nishimoto, K. and Takata, H. (2015) Visualization of Magnetic Nanofibers Using Magnetic Particle Imaging. Open Journal of Medical Imaging, 5, 56-65.
http://dx.doi.org/10.4236/ojmi.2015.52009
[21] Murase, K., Banura, N., Mimura, A. and Nishimoto, K. (2015) Simple and Practical Method for Correcting the Inhomogeneous Sensitivity of a Receiving Coil in Magnetic Particle Imaging. Japanese Journal of Applied Physics, 54, Article ID: 038001.
http://dx.doi.org/10.7567/JJAP.54.038001
[22] Murase, K., Oonoki, J., Takata, H., Song, R., Angraini, A., Ausanai, P. and Matsushita, T. (2011) Simulation and Experimental Studies on Magnetic Hyperthermia with Use of Superparamagnetic Iron Oxide Nanoparticles. Radiological Physics and Technology, 4, 194-202.
http://dx.doi.org/10.1007/s12194-011-0123-4
[23] Biederer, S., Knopp, T., Sattel, T.F., Ludtke-Buzug, K., Gleich, B., Weizenecker, J., Borgert, J. and Buzug, T.M. (2009) Magnetization Response Spectroscopy of Superparamagnetic Nanoparticles for Magnetic Particle Imaging. Journal of Physics D: Applied Physics, 42, Article ID: 205007.
http://dx.doi.org/10.1088/0022-3727/42/20/205007
[24] Markov, D.E., Boeve, H., Gleich, B., Borgert, J., Antonelli, A., Sfara, C. and Magnani, M. (2010) Human Erythrocytes as Nanoparticle Carriers for Magnetic Particle Imaging. Physics in Medicine and Biology, 55, 6461-6473.
http://dx.doi.org/10.1088/0031-9155/55/21/008
[25] Kallumadil, M., Tada, M., Nakagawa, T., Abe, M., Southern, P. and Pankhurst, Q.A. (2009) Suitability of Commercial Colloids for Magnetic Hyperthermia. Journal of Magnetism and Magnetic Materials, 321, 1509-1513.
http://dx.doi.org/10.1016/j.jmmm.2009.02.075
[26] Box, G.E.P. and Lucas, H.L. (1959) Design of Experiments in Nonlinear Situations. Biometrika, 46, 77-90.
http://dx.doi.org/10.1093/biomet/46.1-2.77
[27] Rodrigues, H.F., Mell, F.M., Branquinho, L.C., Zufelato, N., Silveira-Lacerda, E.P. and Bakuzis, A.F. (2013) Real- Time Infrared Thermography Detection of Magnetic Nanoparticle Hyperthermia in a Murine Model under a Non- Uniform Field Configuration. International Journal of Hyperthermia, 29, 752-767.
http://dx.doi.org/10.3109/02656736.2013.839056
[28] Andreu, I. and Natividad, E. (2013) Accuracy of Available Methods for Quantifying the Heat Power Generation of Nanoparticles for Magnetic Hyperthermia. International Journal of Hyperthermia, 29, 739-751.
http://dx.doi.org/10.3109/02656736.2013.826825
[29] Shinkai, M., Yanase, M., Honda, H., Wakabayashi, T., Yoshida, J. and Kobayashi, T. (1996) Intracellular Hyperthermia for Cancer Using Magnetite Cationic Liposomes: In Vitro Study. Japanese Journal of Cancer Research, 87, 1179- 1183.
http://dx.doi.org/10.1111/j.1349-7006.1996.tb03129.x
[30] Le, B., Shinkai, M., Kitade, T., Honda, H., Yoshida, J., Wakabayashi, T. and Kobayashi, T. (2001) Preparation of Tumor-Specific Magnetoliposomes and Their Application for Hyperthermia. Journal of Chemical Engineering of Japan, 34, 66-72.
http://dx.doi.org/10.1252/jcej.34.66
[31] Shinkai, M., Le, B., Honda, H., Yoshikawa, K., Shimizu, K., Saga, S., Wakabayashi, T., Yoshida, J. and Kobayashi, T. (2001) Targeting Hyperthermia for Renal Cell Carcinoma Using Human MN Antigen-specific Magnetoliposomes. Japanese Journal of Cancer Research, 92, 1138-1145.
http://dx.doi.org/10.1111/j.1349-7006.2001.tb01070.x
[32] Suzuki, M., Shinkai, M., Kamihira, M. and Kobayashi, T. (1995) Preparation and Characteristics of Magnetite-La- belled Antibody with the Use of Poly (Ethylene Glycol) Derivatives. Biotechnology and Applied Biochemistry, 21, 335-345.
[33] Moroz, P., Jones, S.K., Winter, J. and Gray, B.N. (2001) Targeting Liver Tumors with Hyperthermia: Ferromagnetic Embolization in a Rabbit Liver Tumor Model. Journal of Surgical Oncology, 78, 22-29.
http://dx.doi.org/10.1002/jso.1118
[34] Jordan, A., Scholz, R., Wust, P., Fahling, H., Krause, J., Wlodarczyk, W., Sander, B., Vogl, T. and Felix, R. (1997) Effects of Magnetic Fluid Hyperthermia (MFH) on C3H Mammary Carcinoma in Vivo. International Journal of Hyperthermia, 13, 587-605.
http://dx.doi.org/10.3109/02656739709023559
[35] Deng, Z.S. and Liu, J. (2002) Analytical Study on Bioheat Transfer Problems with Spatial or Transient Heating on Skin Surface or inside Biological Bodies. Journal of Biomechanical Engineering, 124, 638-649.
http://dx.doi.org/10.1115/1.1516810
[36] Pennes, H.H. (1998) Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm. Journal of Applied Physiology, 85, 5-34.
[37] Shih, T.C., Kou, H.S., Liauh, C.T. and Lin, W.L. (2005) The Impact of Thermal Wave Characteristics on Thermal Dose Distribution during Thermal Therapy: A Numerical Study. Medical Physics, 32, 3029-3036.
http://dx.doi.org/10.1118/1.2008507
[38] Skeete, Z., Cheng, H., Crew, E., Lin, L., Zhao, W., Joseph, P., Shan, S., Cronk, H., Luo, J., Li, Y., Zhang, Q. and Zhong, C.J. (2014) Design of Functional Nanoparticles and Assemblies for Theranostic Applications. ACS Applied Materials and Interfaces, 6, 21752-21768.
http://dx.doi.org/10.1021/am502693t
[39] Murase, K., Takata, H., Takeuchi, Y. and Saito, S. (2013) Control of the Temperature Rise in Magnetic Hyperthermia with Use of a Static Magnetic Field. Physica Medica, 29, 624-630.
http://dx.doi.org/10.1016/j.ejmp.2012.08.005
[40] Atsumi, T., Jeyadevan, B., Sato, Y. and Tohji, K. (2007) Heating Efficiency of Magnetite Particles Exposed to AC Magnetic Field. Journal of Magnetism and Magnetic Materials, 310, 2841-2843.
http://dx.doi.org/10.1016/j.jmmm.2006.11.063
[41] Hergt, R., Hiergeist, R., Hilger, I., Kaiser, W.A., Lapatnikov, Y., Margel, S. and Richter, U. (2004) Maghemite Nanoparticles with Very High AC-Losses for Application in RF-Magnetic Hyperthermia. Journal of Magnetism and Magnetic Materials, 270, 345-357.
http://dx.doi.org/10.1016/j.jmmm.2003.09.001
[42] Brezovich, I.A. and Meredith, R.F. (1989) Practical Aspects of Ferromagnetic Thermoseed Hyperthermia. Radiologic Clinics of North America, 27, 589-602.
[43] Hergt, R. and Dutz, S. (2007) Magnetic Particle Hyperthermia—Biophysical Limitations of a Visionary Tumour Therapy. Journal of Magnetism and Magnetic Materials, 311, 187-192.
http://dx.doi.org/10.1016/j.jmmm.2006.10.1156
[44] Robson, M.D., Gatehouse, P.D., Bydder, M. and Bydder, G.M. (2003) Magnetic Resonance: An Introduction to Ultrashort TE (UTE) Imaging. Journal of Computer Assisted Tomography, 27, 825-846.
http://dx.doi.org/10.1097/00004728-200311000-00001
[45] Idiyatullin, D., Corum, C., Park, J.Y. and Garwood, M. (2006) Fast and Quiet MRI Using a Swept Radiofrequency. Journal of Magnetic Resonance, 181, 342-349.
http://dx.doi.org/10.1016/j.jmr.2006.05.014
[46] Zhang, J., Chamberlain, R., Etheridge, M., Idiyatullin, D., Corum, C., Bischof, J. and Garwood, M. (2014) Quantifying Iron-Oxide Nanoparticles at High Concentration Based on Longitudinal Relaxation Using a Three-Dimensional SWIFT Look-Locker Sequence. Magnetic Resonance in Medicine, 71, 1982-1988.
http://dx.doi.org/10.1002/mrm.25181
[47] Hoopes, P.J., Petryk, A.A., Tate, J.A., Savellano, M.S., Strawbridge, R.R., Giustini, A.J., Stan, R.V., Gimi, B. and Garwood, M. (2013) Imaging and Modification of the Tumor Vascular Barrier for Improvement in Magnetic Nanoparticle Uptake and Hyperthermia Treatment Efficacy. Proceedings of SPIE Energy-Based Treatment of Tissue and Assessment VII, 8584, Article ID: 858403.
http://dx.doi.org/10.1117/12.2008689