IJAA  Vol.1 No.2 , June 2011
Simulation Outside Magnetic Field of the Sun
ABSTRACT
We derive the viscous current in the fully ionized two-fluid plasma to generate the solar magnetic field. The global magnetic field of the Sun can be simulated by the viscous current from the differential rotation inside the Sun. The field presents a structure with 6-polar. As the viscous current is very weak, the magnetic field intensity is only about G, which could be considered as the background field of the Sun. The theory is a start for the generation of solar magnetic field. The local strong magnetic field of the Sun is not considered in the paper.

Cite this paper
nullJ. Wu and Z. Yang, "Simulation Outside Magnetic Field of the Sun," International Journal of Astronomy and Astrophysics, Vol. 1 No. 2, 2011, pp. 90-97. doi: 10.4236/ijaa.2011.12013.
References
[1]   M. Ossendrijver, “The Solar Dynamo,” The Astronomy and Astrophysics Review, Vol. 11, No. 4, 2003, pp. 287-367. doi:10.1007/s00159-003-0019-3

[2]   P. Charbonneau, “Dynamo Models of the Solar Cycle,” 2005. http://www.livingreviews.org/lrsp-2010-3

[3]   S. M. Tobias, “The Solar Dynamo,” Philosophical Transactions of the Royal Society A, Vol. 360, No. 1801, 2002, pp. 2741-2756. doi:10.1098/rsta.2002.1090

[4]   S. J. Larmor, “The Relativity of the Forces of Nature II,” Monthly Notices of the Royal Astronomical Society, Vol. 80, No. 1, 1919, pp. 118-138.

[5]   T. G. Cowling, “The Stability of Gaseous Stars,” Monthly Notices of the Royal Astronomical Society, Vol. 94, 1934, pp. 768-782.

[6]   E. Bullard and H. Gellman, “Homogeneous Dynamos and Terrestrial Magnetism,” Philosophical Transactions of the Royal Society A, Vol. 247, No. 928, 1954, pp. 213- 278. doi:10.1098/rsta.1954.0018

[7]   E. N. Parker, “The Formation of Sunspots from the Solar Toroidal Field,” Astrophysical Journal, Vol. 121, 1955, pp. 491-507. doi:10.1086/146010

[8]   M. Steenbeck, K. Krause and K. H. R?dler, “A Calculation of the Mean Electromotive Force in an Electrically Conducting Fluid in Turbulent Motion, under the Influence of Coriolis Forces,” Zeitschrift Naturforschung Teil A, Vol. 21, 1966, pp. 369-375.

[9]   M. Stix, “Differential Rotation and the Solar Dynamo,” Astronomy & Astrophysics, Vol. 47, No. 2, 1976, pp. 243-254.

[10]   E. N. Parker, “Cosmical Magnetic Fields: Their Origin and Their Activity,” Oxford University Press, New York, 1979, pp. 40-90.

[11]   H. W. Babcock, “The Topology of the Sun’s Magnetic Field and the 22-Year Cycle,” Astrophysical Journal, Vol. 133, 1961, pp. 572-587. doi:10.1086/147060

[12]   E. N. Parker, “A Solar Dynamo Surface Wave at the Interface between Convection and Nonuniform Rotation,” Astrophysical Journal, Vol. 408, No. 2, 1993, pp. 707- 719. doi:10.1086/172631

[13]   A. R. Choudhuri, M. Schüssler and M. Dikpati, “The So- lar Dynamo with Meridional Circulation,” Astronomy & Astrophysics, Vol. 303, No. 2, 1995, pp. 29-32.

[14]   M. Dikpati and G. Giloman, “Global Solar Dynamo Models: Simulations and Predictions,” Journal of Astrophysics and Astronomy, Vol. 29, No. 1-2, 2008, pp. 29-39. doi:10.1007/s12036-008-0004-3

[15]   M. Dikpati and P. A. Gilman, “Flux-Transport Solar Dynamos,” Space Science Reviews, Vol. 144, No. 1-4, 2009, pp. 67-75. doi:10.1007/s11214-008-9484-3

[16]   D. Nandy and A. R. Choudhuri, “Explaining the Latitudinal Distribution of Sunspots with Deep Meridional Flow,” Science, Vol. 296, No. 5573, 2002, pp. 1671-1673. doi:10.1126/science.1070955

[17]   M. Stix, “A Non-Axisymmetric α-Effect Dynamo,” Astronomy & Astrophysics, Vol. 13, 1971, pp. 203-208.

[18]   A. Bigazzi and A. Ruzmaikin, “The Sun’s Preferred Longitudes and the Coupling of Magnetic Dynamo Modes,” Astronomical Journal, Vol. 604, No. 2, 2004, pp. 944- 959.

[19]   G. A. Glatzmaier and P. H. Roberts, “A Three-Dimensional Self-Consistent Computer Simulation of a Geomagnetic Field Reversal,” Nature, Vol. 377, 1995, pp. 203-209. doi:10.1038/377203a0

[20]   V. Archontis, K.Tsinganos and C. Gontikakis, “Recurrent Solar Jets Active Regions,” Astronomy & Astrophysics, Vol. 512, 2010, pp. 1-4. doi:10.1038/377203a0

[21]   M. S. Miesch, A. S. Brun, M. Derosa and J. Toomre, “Structure and Evolution of Giant Cells in Global Models of Solar Convection,” Astrophysical Journal, Vol. 673, No. 1, 2008, pp. 557-575. doi:10.1086/523838

[22]   H. K. Moffatt, “Magnetic Field Generation in Electrically Conducting Fluids,” Cambridge University Press, Cambridge, 1978.

[23]   N. O. Weiss and M. J. Thompson, “The Solar Dynamo,” Space Science Reviews, Vol. 144, No. 1-4, 2009, pp. 53-66. doi:10.1007/s11214-008-9435-z

[24]   M. Stix, “The Sun,” Springer-Verlag, Berlin, 1989.

[25]   F. F. Chen, “Introduction to Plasma Physics,” Plenum Press, New York, 1974.

[26]   J. D. Huba and J. A. Fedder, “Self-Generation of Magnetic Fields by Sheared Flows in Weakly Ionized Plasmas,” Physics of Fluids B, Vol. 5, No. 10, 1993, pp. 3779-3788. doi:10.1063/1.860848

[27]   S. I. Braginskii, “In Reviews of Plasma Physics,” Consultants Bureau, New York, 1965.

[28]   L. Spitzer Jr., “Physics of Fully Ionized Gases,” Interscience Publishers ING, New York, 1962.

[29]   M. S. Wheatland and D. B. Melrose, “Alfvénic Fronts and the Turning-off of the Energy Release in Solar Flares,” Proceedings of the Astronnomical Society of Australia, Vol. 11, 1994, pp. 25-27.

[30]   E. N. Parker, “Comment on ‘Current Paths in the Corona and Energy Release in Solar Flares’,” Astrophysical Journal, Vol. 471, No. 1, 1996, pp. 489-496. doi:10.1086/177984

[31]   T. M. Brown, J. Christensen-Dalsgarrd, W. A. Dziembowski, et al., “Inferring the Sun’s Internal Angular Velocity from Observed p-Mode Frequency Splittings,” Astrophysical Journal, Vol. 343, 1989, pp. 526-546. doi:10.1086/167727

[32]   P. R. Goode, W. A. Dziembowski, S. G. Korzennik and E. J. Rhodes Jr., “What We Know about the Sun’s Internal Rotation from Solar Oscillations,” Astrophysical Journal, Vol. 367, 1991, pp. 649-657. doi:10.1086/169660

[33]   M. Dikpati and P. Charbonneau, “A Babcock-Leighton Flux Transport Dynamo with Solar-Like Differential Rotation,” Astrophysical Journal, Vol. 518, No. 1, 1999, pp. 508-520. doi:10.1086/307269

[34]   J. G. Beck, “A Comparison of Differential Rotation Measurements,” Solar Physics, Vol. 191, No. 1, 1999, pp. 47-70. doi:10.1023/A:1005226402796

[35]   S. Tomczyk, J. Schou and M. J. Thompson, “Measurement of the Rotation Rate in the Deep Solar Interior,” Astrophysical Journal, Vol. 448, 1995, pp. 57-60.

[36]   P. Charbonneau and K. B. Macgregor, “On the Generation of Equipartition-Strength Magentic Fields by Turbulent Hydromagnetic Dynamos,” Astrophysical Journal, Vol. 473, No. 1, 1996, pp. 59-62. doi:10.1086/310387

[37]   J. N. Bahcall, M. H. Pinsonneault and S. Basu, “Solar Models: Current Epoch and Time Dependences, Neutrinos and Helioseismological Properties,” Astrophysical Journal, Vol. 555, No. 2, 2001, pp. 990-1012. doi:10.1086/321493

[38]   J. N. Bahcall and R. K. Ulrich, “Solar Models, Neutrino Experiments and Helioseismology,” Reviews of Modern Physics, Vol. 60, No. 2, 1988, pp. 297-372. doi:10.1103/RevModPhys.60.297

[39]   A. G. Kosovichev, “Solar Dynamo and Magnetic Self- Organization,” The Astronomy and Astrophysics Decadal Survey, Science White Papers, Vol. 160, 2010, pp. 1-8.

 
 
Top