[1] [1] Dowell, E.H. and Hall, K.C. (2001) Modeling of Fluid-Structure Interaction. Annual Reviews of Fluid Mechanics, 33, 445-490.
http://dx.doi.org/10.1146/annurev.fluid.33.1.445
[2] Lucia, D.J., Beran, P.S. and Silva, W.A. (2004) Reduced-Order Modeling: New Approaches for Computational Physics. Progress in Aerospace Sciences, 40, 51-117.
http://dx.doi.org/10.1016/j.paerosci.2003.12.001
[3] Silva, W. (2005) Identification of Nonlinear Aeroelastic Systems Based on the Volterra Theory: Progress and Opportunity. Nonlinear Dynamics, 39, 25-62.
http://dx.doi.org/10.1007/s11071-005-1907-z
[4] Amsallem, D. and Farhat, C. (2008) Interpolation Method for Adapting Reduced-Order Models and Application to Aeroelasticity. AIAA Journal, 46, 1803-1813.
http://dx.doi.org/10.2514/1.35374
[5] Marzocca, P., Silva, W.A. and Librescu, L. (2004) Nonlinear Open/Closed-Loop Aeroelastic Analysis of Airfoils via Volterra Series. AIAA Journal, 42, 673-686.
http://dx.doi.org/10.2514/1.9552
[6] Zhang, W.W., Ye, Z.Y. and Zhang, C.A. (2009) Aeroservoelastic Analysis for Transonic Missile Based on Computational Fluid Dynamics. Journal of Aircraft, 46, 2178-2183.
http://dx.doi.org/10.2514/1.45249
[7] Zhang, W.W. and Ye, Z.Y. (2010) Effect of Control Surface on Airfoil Flutter in Transonic Flow. Acta Astronautica, 66, 999-1007.
http://dx.doi.org/10.1016/j.actaastro.2009.09.016
[8] Zhang, W.W., Wang, B.B. and Ye, Z.Y. (2012) Efficient Method for Limit Cycle Flutter Analysis by Nonlinear Aerodynamic Reduced-Order Models. AIAA Journal, 50, 1019-1028.
http://dx.doi.org/10.2514/1.J050581
[9] Williamson, C.H.K. and Govardhan, R. (2004) Vortex-Induced Vibrations. Annual Review of Fluid Mechanics, 36, 431-455.
http://dx.doi.org/10.1146/annurev.fluid.36.050802.122128
[10] Bearman, P.W. (2011) Circular Cylinder Wakes and Vortex-Induced Vibrations. Journal of Fluids and Structures, 27, 648-658.
http://dx.doi.org/10.1016/j.jfluidstructs.2011.03.021
[11] Sengupta, T.K., Bhole, A. and Sreejith, N.A. (2013) Direct Numerical Simulation of 2D Transonic Flows around Airfoils. Computers & Fluids, 88, 19-37.
http://dx.doi.org/10.1016/j.compfluid.2013.08.007
[12] Alshabu, A. and Olivier, H. (2008) Unsteady Wave Phenomena on a Supercritical Airfoil. AIAA Journal, 46, 2066-2073.
http://dx.doi.org/10.2514/1.35516
[13] Iovnovich, M. and Raveh, D.E. (2012) Reynolds-Averaged Navier-Stokes Study of the Shock-Buffet Instability Mechanism. AIAA Journal, 50, 880-890.
http://dx.doi.org/10.2514/1.J051329
[14] Crouch, J.D., Garbaruk, A. and Magidov, D. (2007) Predicting the Onset of Flow Unsteadiness Based on Global Instability. Journal of Computational Physics, 224, 924-940.
http://dx.doi.org/10.1016/j.jcp.2006.10.035
[15] Crouch, J.D., Garbaruk, A., Magidov, D. and Travin, A. (2009) Origin of Transonic Buffet on Aerofoils. Journal of Fluid Mechanics, 628, 357-369.
http://dx.doi.org/10.1017/S0022112009006673
[16] Woodgate, M.A. and Badcock, K.J. (2007) Fast Prediction of Transonic Aeroelastic Stability and Limit Cycles. AIAA Journal, 45, 1370-1381.
http://dx.doi.org/10.2514/1.25604
[17] Illingworth, S.J., Morgans, A.S. and Rowley, C.W. (2012) Feedback Control of Cavity Flow Oscillations Using Simple Linear Models. Journal of Fluid Mechanics, 709, 223-248.
http://dx.doi.org/10.1017/jfm.2012.330
[18] Ahuja, S. and Rowley, C.W. (2010) Feedback Control of Unstable Steady States of Flow past a Flat Plate Using Reduced-Order Estimators. Journal of Fluid Mechanics, 645, 447-478.
http://dx.doi.org/10.1017/S0022112009992655
[19] Barkley, D. (2006) Linear Analysis of the Cylinder Wake Mean Flow. Europhysics Letters, 75, 750-756.
http://dx.doi.org/10.1209/epl/i2006-10168-7
[20] Jessie, W., Simone, C. and Angelo, I. (2009) Feedback Control by Low-Order Modeling of the Laminar Flow past a Bluff Body. Journal of Fluid Mechanics, 634, 405-418.
http://dx.doi.org/10.1017/S0022112009990590
[21] He, N., Tourlidakis, A. and Elder, R.L. (2007) Comparisons of Steady and Time-Averaged Unsteady Flow Predictions for Impeller-Diffuser Interactions in a Centrifugal Compressor Stage. Proceedings of GT2007 ASME Turbo Expo 2007: Power for Land, Sea and Air, Montreal, 14-17 May 2007.
http://dx.doi.org/10.1115/gt2007-27985
[22] Chen, Z.L. and Merkle, C.L. (2011) Contrast between Steady and Time-Averaged Unsteady Combustion Simulations. Computers & Fluids, 44, 328-338.
http://dx.doi.org/10.1016/j.compfluid.2011.01.032
[23] Mittal, S. (2008) Global Linear Stability Analysis of Time-Averaged Flows. International Journal for Numerical Methods in Fluids, 58, 111-118.
http://dx.doi.org/10.1002/fld.1714
[24] Langhorne, P.J., Dowling, A.P. and Hooper N. (1990) Practical Active Control System for Combustion Oscillations. Journal of Propulsion and Power, 6, 324-333.
http://dx.doi.org/10.2514/3.25437
[25] Tieron, J.E. and Doyle, J.C. (1992) Multi Mode Active Stabilization of a Rijke Tube. Proceedings of the ASME Winter Annual Meeting, 38, 65-68.
[26] Roe, P.L. (1981) Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes. Journal of Computational Physics, 43, 357-372.
http://dx.doi.org/10.1016/0021-9991(81)90128-5
[27] Jameson, A. (1991) Time Dependent Calculations Using Multigrid, with Applications to Unsteady Flows past Airfoils and Wings. Proceedings of the AIAA 10th Computational Fluid Dynamics Conference, Honolulu, 24-26 June 1991.