JWARP  Vol.3 No.6 , June 2011
Cell Size versus Taxonomic Composition as Determinants of As (III & V) Sensitivity in the Estuarine Diatom Communities
Abstract: Despite scarce studies have analyzed the relative growth inhibition of As (III) and As (V) to diatom, clear pattern of interspecies difference have been shown, identifying cell size as a key property determining the sensitivity of diatom to As. Evidence from cultures suggests that cell size is a key factor in determining the extent of arsenic (III) & (V) stress of diatom, with relatively lesser effects of As (V) than As (III) on small cells. Cent percent growth inhibition was observed for large size group (Coscinodiscus radiatus, Surirella, Amphipleura, Thalassiothrix, Cyclotella and Thalassiosira decipiens) relative to smaller size group (Skeletonema cf. costatum, Navicula rhombica, Amphora hyaline, Nitzschia longissima except Thalassisira. Interspecies differences in As tolerance by diatom in the mangrove ecosystem indicates cell size could be only one factor contributing to these differences. The results show that 81.7% of total arsenic was uptaken from culture media originally amended with arsenic. Looking to the extreme tolerance and arsenic removal efficiency, application of the species with smaller cell size relative to the other tested diatom for bioremediation purpose can be envisaged.
Cite this paper: nullC. Chowdhury, N. Majumder, S. Mandal, M. Dutta, R. Ray and T. Jana, "Cell Size versus Taxonomic Composition as Determinants of As (III & V) Sensitivity in the Estuarine Diatom Communities," Journal of Water Resource and Protection, Vol. 3 No. 6, 2011, pp. 363-369. doi: 10.4236/jwarp.2011.36046.

[1]   M. Neff, “Ecotoxicology of Arsenic in Marine Environment,” Environmental Toxicology and Chemistry, Vol. 16, 1997, pp. 917-927.

[2]   “Arsenic in Drinking Water,” National Research Council, National Academies Press, Washington. DC., 1999.

[3]   R. A. Armstrong, “Nutrient uptake as a Function of Cell Size and Surface Transfer Density: A Michaelis like Approximation to the Model of Pasciak and Gavis,” Deep- Sea Research, Part I, Vol. 55, No. 10, 2008, pp. 1311- 1317.doi:10.1016/j.dsr.2008.05.004

[4]   D. L. Aksnes and J. K. Egge, “A Theoretical Model for Nutrient Uptake in Phytoplankton,” Marine Ecological Progress Series, Vol. 70, 1991, pp. 65-72. doi:10.3354/meps070065

[5]   A. J. Miao, W. X. Wang and P. Juneau, “Comparison of Cd, Cu, and Zn Toxic Effects on Four Marine Phytoplankton by Pulse-Amplitude-Modulated Fluorometry,” Environmental Toxicology and Chemistry, Vol. 24, No. 10, 2005, pp. 2603-2611. doi:10.1897/05-009R.1

[6]   G. F. Riedel and J. G Sanders, “The Interrelationships among Trace Elements Cycling, Nutrient Loading, and System Complexity in Estuaries: A Mesocosm Study,” Estuaries, Vol. 26, No. 2A, 2003, pp.339-351. doi:10.1007/BF02695972

[7]   J.G. Sanders and G. F. Riedel, “Trace Element Transformation during the Development of an Estuarine Algal Bloom,” Estuaries, Vol. 16, No. 3A, 1993, pp. 521-532. doi:10.2307/1352599

[8]   P. Michel, B. Boutier, H. Herbland, B. Averty, L. F. Artigas, D. Anger and E. Charttier, “Behavior of Arsenic on the Continental Shelf of the Gironde Estuary: Role of Phytoplankton in Vertical Fluxes during Spring Bloom Condition,” Oceanologica Acta, Vol. 21, No. 2, 1997, pp. 325-333. doi:10.1016/S0399-1784(98)80019-4

[9]   S. K. Mandal, M. Dey, D. Ganguly, S. Sen and T. K. Jana, “Biogeochemical Controls of Arsenic Occurrence and Motility in the Indian Sundarban Mangrove Ecosystem,” Marine pollution Bulletin, Vol. 58, No. 5, 2009, pp. 652-657. doi:10.1016/j.marpolbul.2009.01.010

[10]   Y. Gao and A. Mucci, “Individual and Competitive Adsorption of Phosphate and Arsenate of Goethite in Artificial Sea Water,” Chemical geology, Vol. 199, No. 1-2, 2003, pp. 91-109. doi:10.1016/S0009-2541(03)00119-0

[11]   K. Knauer and H. Hemond, “Accumulation and Reduction of Arsenate by the Fresh Water Green Alga Chlorella sp. (Chlorophyta),” Journal of Phycology, Vol. 36, No. 3, 2000, pp. 506-509. doi:10.1046/j.1529-8817.2000.99056.x

[12]   H. Biswas, M. Dey, D. Ganguly, T. K. De, S. Ghosh, and T. K. Jana, “Comparative Analysis of Phytoplankton Composition and Abundance over a Two-decade Period at the Land-ocean Boundary of a Tropical Mangrove Ecosystem,” Estuaries and Coasts, Vol. 33, No. 2, 2010, pp. 384-394. doi:10.1007/s12237-009-9193-5. doi:10.1007/s12237-009-9193-5

[13]   S. K Acharya, S. Lahiri, B. C. Kaymahashay, and A. Bhowmik, “Arsenic Toxicity in Ground Water in Parts of Bengal Basin in India and Bangladesh: Role of Quarternary Stratigraphy and Holocene Sea Level Fluctuation,” Environmental Geology, Vol. 39, No. 10, 2000, pp. 1127- 1137.doi:10.1007/s002540000107

[14]   D. Das, G. Samnta, B. K. Mondal, R. T. Chowdhury, C. R. Chanda, P. P. Chowdhury, G. K. Basu and D. Chakraborti, “Arsenic in Ground Water in Six Districts of West Bengal, India,” Environmental Geochemistry and Health, Vol. 18, No. 1, 1996, pp. 5-15. doi:10.1007/BF01757214

[15]   R. Nickson, J. McArthur, N. Burgess, K. M. Ahmed, A. P. Ravenscroff, and M. Rahaman, “Arsenic Poisoning of Bangladesh Ground Water,” Nature, Vol. 395, 1998, p. 338. doi:10.1038/26387

[16]   J. Metral, L. Charlet, S. Burean, S. Basu Mullik, S. Chakraborty, K. M. Ahmed, M. W. Rahman, Z. Cheng and A. Vangeen, “Comparison of Dissolved and Particulate Arsenic Distribution in Shallow Aquifers of Chakdaha, India and Araihazar, Bangladesh,” Geochemical transactions, Vol. 9, 2008, p. 1. doi:10.1186, 1467-4866-9-1.

[17]   T. Kiorboe “Turbulance, Phytoplankton Cell Size and Structure of Pelagic Food Webs,” Advances in Marine Biology, Vol. 29, 1993, pp. 1-72. doi:10.1016/S0065-2881(08)60129-7

[18]   J. S. Edmonds, Y. Shibata, K. A. Francesconi, R. J. Rip pington, M. Morita, “Arsenic Transformations in Short Marine Food Chain Studied by HPLC-ICP/MS,” Applied Organometalic Chemistry, Vol. 11, No. 4, 1997, pp. 281- 287. doi:10.1002/(SICI)1099-0739(199704)11:4<281::AID-AOC581>3.0.CO;2-S

[19]   A. Skovgaard and S. M Deuer, “Long-Term Exposure of Dinoflagellates to 14carbon Effects on Growth Rate and Measurements of Carbon Content,” Journal of plankton research, Vol. 25, No. 8, 2003, pp. 100-1009. doi:10.1093/plankt/25.8.1005

[20]   A. Al-Tisan, Ibrahim and C. P. Joseph, “Distribution of Heavy Metals in Plankton Collected during the Umikata Maru Cruise (II) in the Ropme Sea Area,” In: Proceeding of The Umitaka Maru symposium, Tokyo, Japan, 1995.

[21]   A. Aminot and R. Keroue, “An automated Photo-Oxidation Method for the Determination of Dissolved Organic Phosphorus in Marine and Fresh Water,” Marine Chemistry, Vol. 76, No. 1-2, 2001, pp. 113-126. doi:10.1016/S0304-4203(01)00052-4

[22]   D. E. Cummings, F. Caccavo. Jr, S. Fendorf and R. F. Rosenzweig, “Arsenic Mobilization by the Dissimilarity Fe (III) Reducing Bacterium Shewanella alga Bry,” Environmental Science and Technology, Vol. 33, 1999, pp. 723-729. doi:10.1021/es980541c

[23]   J. H. Han and J. D. Floros, “Modeling the Growth Inhibition Kinetics of Baker’s Yeast by Potassium Sorbate using Statistical Approaches,” Journal of food science, Vol. 63, No. 1, 1998, pp. 12-14. doi:10.1111/j.1365-2621.1998.tb15664.x

[24]   W. R, Cullen, L. G. Harrison and H. L. G. Hewitt, “Bioaccumulation and Excretion of Arsenic Compounds by a Marine Unicellular Alga, Polyphysa peniculus,” Applied organometallic chemistry, Vol. 8, No. 4, 1994, pp. 313-324. doi:10.1002/aoc.590080406

[25]   D. A. Bright, M. Dodd and K. J. Reimer, “Arsenic in subArctic Lake Influenced by Gold Mine Effluent: the Occurrence of Organoarsenicals and ‘Hidden’ Arsenic,” The science of the total environment, Vol. 180, No. 2, 1996, pp. 165-182. doi:10.1016/0048-9697(95)04940-1

[26]   Y. Sohrin, M. Matsui, M. Kawashima, M. Hojo and H. Hasegawa. “Arsenic Biogeochemistry Altered by Eutrophication in Lake Biwas,” Japan Environmental Science and Technology, Vol. 31, No. 10, 1997, pp. 2712-2720. doi:10.1021/es960846w

[27]   K. A. Francesconi and J. S. Edmonds “Arsenic and Marine Organisms,” Advances in Organic Chemistry, Vol. 44, 1997, pp. 147-189.