[1] Pirhalla, M.A., Gende, S. and Molders, N. (2014) Fate of Particulate Matter from Cruise-Ship Emissions in Glacier Bay during the 2008 Tourist Season. Journal of Environmental Protection, 4, 1235-1254.
http://dx.doi.org/10.4236/jep.2014.512118
[2] Molders, N., Bruyère, C.L., Gende, S. and Pirhalla, M.A. (2014) Assessment of the 2006-2012 Climatological Fields and Mesoscale Features from Regional Downscaling of CESM Data by WRF-Chem over Southeast Alaska. Atmospheric and Climate Sciences, 4, 589-613.
http://dx.doi.org/10.4236/acs.2014.44053
[3] Shulski, M. and Wendler, G. (2007) The Climate of Alaska. University of Alaska Press, Snowy Owl Books, Fairbanks, 216 p.
[4] Lovich, J.E. and Ennen, J.R. (2013) Assessing the State of Knowledge of Utility-Scale Wind Energy Development and Operation on Non-Volant Terrestrial and Marine Wildlife. Applied Energy, 103, 52-60.
http://dx.doi.org/10.1016/j.apenergy.2012.10.001
[5] Schirokauer, D., Graw, R. and Faure, A. (2010) Air Pollution Emission Inventory for 2008 Tourism Season Klondike Gold Rush National Heritage Park Skagway, Alaska. National Park Service, Report, 60 p.
[6] Molders, N., Gende, S. and Pirhalla, M.A. (2013) Assessment of Cruise-Ship Activity Influences on Emissions, Air Quality, and Visibility in Glacier Bay National Park. Atmospheric Pollution Research, 4, 435-445.
http://dx.doi.org/10.5094/apr.2013.050
[7] ENVIRON (2004) Cold Ironing Cost Effectiveness Study—Executive Summary. Report, 17 p.
[8] Ross, H.K., Cooney, J., Hinzman, M., Smock, S., Sellhorst, G., Dlugi, R., Moders, N. and Kramm, G. (2014) Wind Power Potential in Interior Alaska from a Micrometeorological Perspective. Atmospheric and Climate Sciences, 4, 100-121.
http://dx.doi.org/10.4236/acs.2014.41013
[9] Panofsky, H.A. (1963) Determination of Stress from Wind and Temperature Measurements. Quarterly Journal of the Royal Meteorological Society, 89, 85-94.
http://dx.doi.org/10.1002/qj.49708937906
[10] Kramm, G. and Herbert, F. (2009) Similarity Hypotheses for the Atmospheric Surface Layer Expressed by Dimensional Π Invariants Analysis—A Review. The Open Atmospheric Science Journal, 3, 48-79.
http://dx.doi.org/10.2174/1874282300903010048
[11] Grell, G.A., Peckham, S.E., Schmitz, R., Mckeen, S.A., Frost, G., Skamarock, W.C. and Eder, B. (2005) Fully Coupled “Online” Chemistry within the WRF Model. Atmospheric Environment, 39, 6957-6975.
http://dx.doi.org/10.1016/j.atmosenv.2005.04.027
[12] Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Barker, D.M., Duda, M.G., Huang, X.-Y., Wang, W. and Powers, J.G. (2008) A Description of the Advanced Research WRF Version 3. NCAR Technical Note, NCAR, Boulder, 125 p.
[13] Peckham, S.E., Fast, J., Schmitz, R., Grell, G.A., Gustafson, W.I., Mckeen, S.A., Ghan, S.J., Zaveri, R., Easter, R.C., Barnard, J., Chapman, E., Salzman, M., Barth, M., Pfister, G., Wiedinmyer, C., Hewson, M. and Freitas, S.R. (2011) WRF/Chem Version 3.3 User’s Guide. NOAA Technical Memo, 98 p.
[14] Hong, S.-Y. and Lim, J.O.J. (2006) The WRF Single-Moment 6-Class Microphysics Scheme (WSM6). Journal of Korean Meteorological Society, 42, 129-151.
[15] Grell, G.A. and Dévényi, D. (2002) A Generalized Approach to Parameterizing Convection Combining Ensemble and Data Assimilation Techniques. Geophysical Research Letters, 29, 1693-1696.
http://dx.doi.org/10.1029/2002GL015311
[16] Chou, M.-D. and Suarez, M.J. (1994) An Efficient Thermal Infrared Radiation Parameterization for Use in General Circulation Models. NASA Technical Memorandum 104606, Volume 3, 85 p.
[17] Mlawer, E.J., Taubman, S.J., Brown, P.D., Iacono, M.J. and Clough, S.A. (1997) Radiative Transfer for Inhomogeneous Atmospheres: RRTM, a Validated Correlated-K Model for the Longwave. Journal of Geophysical Research, 102D, 16663-16682.
http://dx.doi.org/10.1029/97JD00237
[18] Barnard, J., Fast, J., Paredes-Miranda, G., Arnott, W. and Laskin, A. (2010) Technical Note: Evaluation of the WRF-Chem “Aerosol Chemical to Aerosol Optical Properties” Module Using Data from the MILAGRO Campaign. Atmospheric Chemistry and Physics, 10, 7325-7340.
http://dx.doi.org/10.5194/acp-10-7325-2010
[19] Janjic, Z.I. (2002) Nonsingular Implementation of the Mellor-Yamada Level 2.5 Scheme in the NCEP Meso Model. NCEP Office Note, No. 437, 61 p.
[20] Chen, F. and Dudhia, J. (2000) Coupling an Advanced Land-Surface/Hydrology Model with the Penn State/NCAR MM5 Modeling System. Part I: Model Description and Implementation. Monthly Weather Review, 129, 569-585.
http://dx.doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2
[21] Stockwell, W.R., Middleton, P., Chang, J.S. and Tang, X. (1990) The Second-Generation Regional Acid Deposition Model Chemical Mechanism for Regional Air Quality Modeling. Journal Geophysical Research, 95, 16343-16367.
http://dx.doi.org/10.1029/JD095iD10p16343
[22] Madronich, S. (1987) Photodissociation in the Atmosphere, 1, Actinic Flux and the Effects of Ground Reflections and Clouds. Journal Geophysical Research, 92, 9740-9752.
http://dx.doi.org/10.1029/JD092iD08p09740
[23] Ackermann, I.J., Hass, H., Memmesheimer, M., Ebel, A., Binkowski, F.S. and Shankar, U. (1998) Modal Aerosol Dynamics Model for Europe: Development and First Applications. Atmospheric Environment, 32, 2981-2299.
http://dx.doi.org/10.1016/S1352-2310(98)00006-5
[24] Schell, B., Ackermann, I.J., Hass, H., Binkowski, F.S. and Ebel, A. (2001) Modeling the Formation of Secondary Organic Aerosol within a Comprehensive Air Quality Model System. Journal Geophysical Research, 106, 28275-28293.
http://dx.doi.org/10.1029/2001JD000384
[25] Wesely, M.L. (1989) Parameterization of Surface Resistances to Gaseous Dry Deposition in Regional-Scale Numerical Models. Atmospheric Environment, 23, 1293-1304.
http://dx.doi.org/10.1016/0004-6981(89)90153-4
[26] Molders, N., Tran, H.N.Q., Quinn, P., Sassen, K., Shaw, G.E. and Kramm, G. (2011) Assessment of WRF/Chem to Capture Sub-Arctic Boundary Layer Characteristics during Low Solar Irradiation Using Radiosonde, Sodar, and Station Data. Atmospheric Pollution Research, 2, 283-299.
http://dx.doi.org/10.5094/APR.2011.035
[27] Guenther, A. (1997) Seasonal and Spatial Variations in Natural Volatile Organic Compund Emissions. Ecological Applications, 7, 34-45.
http://dx.doi.org/10.1890/1051-0761(1997)007[0034:SASVIN]2.0.CO;2
[28] Khordakova, D. (2014) Investigation of Potential Wind Power in Southeast Alaska Using Model Data. Bachelor of Sciences, No. 3602036, 64.
[29] Harris, I., Jones, P.D., Osborn, T.J. and Lister, D.H. (2013) Updated High-Resolution Grids of Monthly Climatic Observations—The CRU TS3.10 Dataset. International Journal of Climatology, 34, 623-642.
http://dx.doi.org/10.1002/joc.3711
[30] Zhang, H.-M., Bates, J.J. and Reynolds, R.W. (2006) Assessment of Composite Global Sampling: Sea Surface Wind Speed. Geophysical Research Letters, 33, Article ID: L17714.
http://dx.doi.org/10.1029/2006gl027086
[31] Zhang, Y., Dubey, M.K., Olsen, S.C., Zheng, J. and Zhang, R. (2009) Comparisons of WRF/Chem Simulations in Mexico City with Ground-Based Rama Measurements During the 2006-Milagro. Atmospheric Chemistry and Physics, 9, 3777-3798.
http://dx.doi.org/10.5194/acp-9-3777-2009
[32] Kim, J., Waliser, D.E., Mattmann, C.A., Mearns, L.O., Goodale, C.E., Hart, A.F., Crichton, D.J., Mcginnis, S., Lee, H., Loikith, P.C. and Boustani, M. (2013) Evaluation of the Surface Climatology over the Conterminous United States in the North American Regional Climate Change Assessment Program Hindcast Experiment Using a Regional Climate Model Evaluation System. Journal of Climate, 26, 5698-5715.
http://dx.doi.org/10.1175/JCLI-D-12-00452.1