JEMAA  Vol.7 No.6 , June 2015
Measurable Dielectric Permittivity Range for TE and TM Modes in a Shielded Dielectric Resonator
Abstract: Dielectric resonator methods constitute one of the most useful techniques for the measurement of electromagnetic material properties in the microwave frequency range. Several geometric configurations are used for this purpose and, in the present paper, we consider the case of a dielectric rod enclosed in a cylindrical metallic enclosure. To carry out dielectric measurements in this system it is necessary to know the highest permittivity constant value for which the resonance condition still can be attained into the cavity. Using an approach based on magnetic and electric Hertzian potentials we have derived the set of TE and TM modes for the relevant geometry described and, then we have calculated the valid dielectric permittivity constant range of measurements for low-loss materials in a cylindrical cavity using a simple resonance frequency condition. Finally, we present a simple application of this method in order to determine the dielectric permittivity constant of heavy oil with 11 API.
Cite this paper: Javier Paez, E. , Cessare Callarotti, R. and Sanchez, Y. (2015) Measurable Dielectric Permittivity Range for TE and TM Modes in a Shielded Dielectric Resonator. Journal of Electromagnetic Analysis and Applications, 7, 189-197. doi: 10.4236/jemaa.2015.76020.

[1]   Love, D.C. and Rothwell, E.J. (2006) A Mode-Matching Approach to Determine the Shielding Properties of a Doubly Periodic Array of Rectangular Apertures in a Thick Conducting Screen. IEEE Transactions on Electromagnetic Compatibility, 48, 121-133.

[2]   Massaro, A., et al. (2009) Design and Modeling of GaAs/AlGaAs Nonlinear Waveguides by Hertzian Potential Formulation. European Microwave Conference, Rome, 29 September 2009-1 October 2009, 719-722.

[3]   Yla-Oijala, P., Taskinen, M. and Sarvas, J. (2001) Multilayered Media Green’s Functions for Mpie with General Electric and Magnetic Sources by the Hertz Potential Approach. Progress in Electromagnetics Research, 33, 141-165.

[4]   Tartarini, D. and Massaro, A. (2011) GPU Approach for Hertzian Potential Formulation Tool Oriented For Electromagnetic Nanodevices. Progress in Electromagnetics Research M, 17, 135-150.

[5]   Collin, R.E. (1960) Field Theory of Guided Waves. 2nd Edition, IEEE Antennas and Propagation Society, USA.

[6]   Gershon, D., Calame, J.P., Carmel, Y. and Antonsen, T.M. (2000) Adjustable Resonant Cavity for Measuring the Complex Permittivity of Dielectric Materials. Review of Scientific Instruments, 71, 3207-3209.

[7]   Chen, L.J. and Lue, J.T. (1998) The Transition from the d- to s-State Due to Thermal Fluctuation for High-Tc Superconductors as an Evidence from the Microwave Penetration-Depth Measurement. IEEE Transactions on Microwave Theory and Techniques, 46, 1251-1256.

[8]   Pozar, D.M. (2005) Microwave Engineering. 3rd Edition, John Wiley & Sons, Inc., Hoboken.

[9]   Kukharchik, P.D., Serdyuk, V.M. and Titovitsky, J.A. (2008) Diffraction of Hybrid Modes in a Cylindrical Cavity Resonator by a Transverse Circular Slot with a Plane Anisotropic Dielectric Layer. Progress in Electromagnetics Research, 3, 73-94.

[10]   Shen, Z.Y., et al. (1992) High-Tc-Superconductor-Sapphire Microwave Resonator with Extremely High Q-Values up to 90 K. IEEE Transactions on Microwave Theory and Techniques, 40, 2424-2431.

[11]   Liu, J.H., Chen, C.L., Lue, H.T. and Lue, J.T. (2003) A New Method Developed in Measuring the Dielectric Constants of Metallic Nanoparticles by a Microwave Double-Cavity Dielectric Resonator. IEEE Microwave and Wireless Components Letters, 13, 181-183.

[12]   Yan-Shian, Y., Juh-Tzeng, L. and Zhi-Ren, Z. (2005) Measurement of the Dielectric Constants of Metallic Nanoparti- cles Embedded in a Paraffin Rod at Microwave Frequencies. IEEE Transactions on Microwave Theory and Techniques, 53, 1756-1760.

[13]   Stratton, J.A. (1941) Electromagnetic Theory. McGraw-Hill Boook Company, USA.

[14]   Geyi, W. (2008) Time-Domain Theory of Metal Cavity Resonator. Progress in Electromagnetics Research, 78, 219- 253.

[15]   Ong, C.K., Varadan, V.V. and Varadan, V.K. (2004) Microwave Electronics Measurement and Materials Characterization. John Wiley & Sons Ltd., Chichester.

[16]   Dester, G.D., Rothwell, E.J., Havrilla, M.J. and Hyde, M.W. (2010) Error Analysis of a Two-Layer Method for the Electromagnetic Characterization of Conductor-Backed Absorbing Material Using an Open-Ended Waveguide Probe. Progress in Electromagnetics Research B, 26, 1-21.

[17]   Krupka, J., Gregory, A.P., Rochard, O.C., Clarke, R.N., Riddle, B., et al. (2001) Uncertainty of Complex Permittivity Measurements by Split-Post Dielectric Resonator Technique. Journal of the European Ceramic Society, 21, 2373-2676.

[18]   Riddle, B., Baker-Jarvis, J. and Krupka, J. (2003) Complex Permittivity Measurements of Common Plastics over Variable Temperatures. IEEE Transactions on Microwave Theory and Techniques, 51, 727-733.

[19]   Paez, E., Azpurua, M.A., Tremola, C. and Callarotti, R.C. (2012) Uncertainty Estimation in Complex Permittivity Measurements by Shielded Dielectric Resonator Technique Using the Monte Carlo Method. Progress in Electromagnetics Research B, 41, 101-119.

[20]   Paez, E., Azpurua, M.A., Tremola, C. and Callarotti, R.C. (2012) Uncertainty Minimization in Permittivity Measurements in Shielded Dielectric Resonators. Progress in Electromagnetics Research M, 26, 127-141.

[21]   Harrington, R.F. (1961) Time-Harmonic Electromagnetic Fields. John Wiley and Sons, Hoboken, 220.

[22]   Sun, E.Y. and Chao, S.H. (1995) Unloaded Q Measurement—The Critical-Points Method. IEEE Transactions on Microwave Theory and Techniques, 43, 1983-1986.

[23]   Callarotti, R.C. and Paez, E.J. (2014) Microwave Dielectric Properties of Heavy Oil and Heating of Reservoirs. SPE Energy Resources Conference, Port of Spain, 9-11 June 2014, 127-141.

[24]   Callarotti, R.C. and Paez, E.J. (2013) Efficient Eigenvalue Numerical Solutions for Time Dependent Linear Systems. Computational Methods and Experimental Measurements, 16, 43-54.

[25]   Paez, E.J., Callarotti, R.C., Azprua, B.M. and Rodrguez, R.J. (2013) Medida de la permitividad de lquidos de bajas prdidas en un resonador dielctrico blindado en alta frecuencia (4881 GHz). In 10 Congreso internacional de metrologa elctrica, Buenos Aires, September 2013, Vol. 10.