Numerical Solution of Obstacle Problems by B-Spline Functions

References

[1] N. Kikuchi and J. T. Oden, “Contact Problems in Elasticity,” SIAM Publishing Company, Philadelphia, 1988.

[2] M. A. Noor and S. I. A. Tirmizi, “Finite Difference Techniques for Solving Obstacle Problems,” Applied Mathematics Letters, Vol. 1, No. 3, 1988, pp. 267-271.
doi:10.1016/0893-9659(88)90090-0

[3] E. A. Al-Said, “ The Use of Cubic Splines in the Nu- merical Solution of a System of Second Order Boundary Value Problems,” Computers & Mathematics with Appli- cations, Vol. 42, No. 6, September 2001, pp. 861-869.
doi:10.1016/S0898-1221(01)00204-8

[4] C. Baiocchi and A. Capelo, “Variational and Quasi- -Variational Inequalities,” John Willey and Sons, New York, 1984.

[5] A. Friedman, “Variational Principles and Free-Boundary Problems,” John Willey and Sons, New York, 1982.

[6] R. Glowinski, J. L. Lions and R. Tremolieres, “Numerical Analysis of Variational Inequalities,” North-Holland Pub., Amesterdam, 1981.

[7] D. Kinderlehrer and G. Stampacchia, “An Introduction to Variational Inequalities and Their Applications,” New York Academic Press, New York, 1980.

[8] H. Lewy and G. Stampacchia, “On the Regularity of the Solutions of the Variational Inequalities,” Communica- tions on Pure and Applied Mathematics, Vol. 22, No. 2, March 1969, pp. 153-188.

[9] J. L. Lions and G. Stampacchia, “Variational Inequa- lities,” Communications on Pure and Applied Mathe- matics, Vol. 20, No. 3, August 1967, pp. 493-519.
doi:10.1002/cpa.3160200302

[10] J. F. Rodrigues, “Obstacle Problems in Mathematical Physics,” North-Holland Pub., Amesterdam, 1987.

[11] F. Villaggio, “The Ritz Method in Solving Unilateral Problems in Elasticity,” Meccanica, Vol. 16, No. 3, 1981, pp. 123-127. doi:10.1007/BF02128440

[12] M. A. Noor and A. K. Khalifa, “Cubic Splines Collocation Methods for Unilateral Problems,” Inter- national Journal of Engineering Science, Vol. 25, No. 11, 1987, pp. 1527-1530. doi:10.1016/0020-7225(87)90030-9

[13] E. A. Al-Said, “Smooth Spline Solutions for a System of Second Order Boundary Value Problems,” Jounal of Natural Geometry, Vol. 16, No. 1, 1999, pp. 19-28.

[14] E. A. Al-Said, M. A. Noor and A. A. Al-Shejari, “Nu- merical Solutions for System of Second Order Boundary Value Problems,” The Korean Journal of Computational & Applied Mathematics, Vol. 5,No. 3, 1998, pp. 659-667.

[15] E. A. Al-Said, “Spline Solutions for System of Second Order Boundary Value Problems,” International Journal of Computer Mathematics, Vol. 62, No. 1, 1996, pp. 143- 154. doi:10.1080/00207169608804531

[16] E. A. Al-Said, “Spline Methods for Solving System of Second Order Boundary Value Problems,” International Journal of Computer Mathematics, Vol. 70, No. 4, 1999, pp. 717-727. doi:10.1080/00207169908804784

[17] A. Khan and T. Aziz, “ Parametric Cubic Spline Approach to the Solution of a System of Second Order Boundary Value Problems,” Journal of Optimization The- ory and Applications, Vol. 118, No. 1, July 2003, pp. 45- 54. doi:10.1023/A:1024783323624

[18] Siraj-ul-Islam, M. A. Noor, I. A. Tirmizi and M. A. Khan, “Quadratic Non-Polynomial Spline Approach to the Solution of a System of Second-Order Boundary-Value Problems,” Applied Mathematics and Computation, Vol. 179, No. 1, August 2006, pp. 153-160.
doi:10.1016/j.amc.2005.11.091

[19] Siraj-ul-Islam and I. A. Tirmizi, “Non-Polynomial Spline Approach to the Solution of a System of Second-Order Boundary-Value Problems,” Applied Mathematics and Computation, Vol. 173,No. 2. February 2006, pp. 1208- 1218. doi:10.1016/j.amc.2005.04.064

[20] J. H. Ahlberg, E. N. Nilson and J. L. Walsh, “The Theory of Splines and Their Applications,” Academic Press, New York, 1967.

[21] C. De Boor, “A Practical Guide to Splines,” Springer- Verlag, New York, 1978.

[22] M. Ahmadinia and G. B. Loghmani, “Splines and Anti- Periodic Boundary Value Problems,” International Journal of Computer Mathematics, Vol. 84, No. 12, December 2007, pp. 1843-1850.
doi:10.1080/00207160701336466

[23] I. Daubecheis, “Orthonormal Bases of Compactly Supported Wavelets,” Communications on Pure and Applied Mathematics, Vol. 41, No. 7, October 1988, pp. 909-996.

[24] G. B. Loghmani and M. Ahmadinia, “Numerical Solution of Sixth-Order Boundary Value Problems with Sixth- -Degree B-Spline Functions,” Applied Mathematics and Computation, Vol. 186, No. 2, March 2007, pp. 992-999.
doi:10.1016/j.amc.2006.08.068

[25] G. B. Loghmani and M. Ahmadinia, “Numerical Solution of Third-Order Boundary Value Problems,” Iranian Journal of Science & Technology, Vol. 30, No. A3, 2006, pp. 291-295.

[26] M. Radjabalipour, “Application of Wavelet to Optimal Control Problems,” International Conference on Scien- tific Computation and Differential Equations, Vancouver, July 29-August 3, 2001.

[27] L. L. Schumaker, “Spline Functions: Basic Theory,” John Willey and Sons, New York, 1981.

[28] J. Stoer and R. Bulirsch, “Introduction to Numerical Analysis,” Springer-Verlag, Berlin 1993.

[29] E. A. Al-Said, M. A. Noor and A. A. Al-Shejari, “Nu- merical Solutions of Third-Order System of Boundary Value Problems,” Applied Mathematics and Computation, Vol. 190, No. 1, July 2007, pp. 332-338.
doi:10.1016/j.amc.2007.01.031