AiM  Vol.5 No.6 , June 2015
Identification of Bacterial Fish Pathogens in Brazil by Direct Colony PCR and 16S rRNA Gene Sequencing
ABSTRACT
Intensive fish farming systems in Brazil have increased the disease incidence, mainly of bacterial origin, due to higher stocking density, high organic matter levels and poor quality of the aquatic environment that causes high mortality rates during outbreaks. The identification of pathogenic species using a fast and reliable method of diagnosis is essential for successful epidemiological studies and disease control. The present study evaluated the use of direct colony PCR in combination with 16S rRNA gene sequencing to diagnose fish bacterial diseases, with the goal of reducing the costs and time necessary for bacterial identification. The method was successful for all 178 isolates tested and produced bands with the same intensity as the standard PCR performed using pure DNA. In conclusion, the genetics methods allowed detecting the most common and important pathogens in Aquaculture, including 12 species of occurrence in Brazilian fish farms. The results of the present study constitute an advance in the available diagnostic methods for bacterial pathogens in fish farms.

Cite this paper
Sebastião, F. , Furlan, L. , Hashimoto, D. and Pilarski, F. (2015) Identification of Bacterial Fish Pathogens in Brazil by Direct Colony PCR and 16S rRNA Gene Sequencing. Advances in Microbiology, 5, 409-424. doi: 10.4236/aim.2015.56042.
References
[1]   FAO Fishery and Aquaculture Country Profiles. Brazil (2010) Country Profile Fact Sheets. FAO Fisheries and Aquaculture Department [online]. Rome. Updated 1 June 2010.

[2]   Dash, S.S., Dasi, B.K., Pattnaik, P., Samal, S.K., Sahu, S. and Ghosh, S. (2009) Biochemical and Serological Characterization of Flavobacterium columnare from Freshwater Fishes of Eastern India. Journal of World Aquaculture Society, 40, 236-247. http://dx.doi.org/10.1111/j.1749-7345.2009.00246.x

[3]   Shama, S., Brandao, D.A., Vargas, A.C., Costa, M.M. and Pedrozo, A.F. (2000) Bactérias com potencial patogênico nos rins e lesoes externas de jundiás (Rhamdia quelen) cultivados em sistema semi-intensivo. Ciência Rural, 30, 293-298.
http://dx.doi.org/10.1590/S0103-84782000000200016

[4]   Vendrell, D., Balcazar, J.L., Ruiz-Zarzuela, I., Blas, I.D., Girones, O. and Muzquiz, J.L. (2006) Lactococcus garvieae in Fish: A Review. Comparative Immunology, Microbiology and Infectious Diseases, 29, 177-198. http://dx.doi.org/10.1016/j.cimid.2006.06.003

[5]   Olivares-Fuster, O., Klesius, P.H., Evans, J. and Arias, C.R. (2008) Molecular Typing of Streptococcus agalactiae Isolates from Fish. Journal of Fish Diseases, 31, 277-283. http://dx.doi.org/10.1111/j.1365-2761.2007.00900.x

[6]   Staroscik, A.M., Hunnicutt, D.W., Archibald, K.E. and Nelson, D.R. (2008) Development of Methods for the Genetic Manipulation of Flavobacterium columnare. BMC Microbiology, 8, 115. http://www.biomedcentral.com/1471-2180/8/115

[7]   Evans, J.J., Klesius, P.H. and Shoemaker, C.A. (2009) First Isolation and Characterization of Lactococcus garvieae from Brazilian Nile Tilapia, Oreochromis niloticus (L.), and Pintado, Pseudoplathystoma corruscans (Spix & Agassiz). Journal of Fish Diseases, 32, 943-951. http://dx.doi.org/10.1111/j.1365-2761.2009.01075.x

[8]   Birkbeck, T.H., Feist, S.W. and Verner-Jeffreys, D.W. (2011) Francisella Infections in Fish and Shellfish. Journal of Fish Diseases, 34, 173-187. http://dx.doi.org/10.1111/j.1365-2761.2010.01226.x

[9]   Burr, S.E., Goldschmidt-Clermont, E., Kuhnert, P. and Frey, J. (2012) Heterogeneity of Aeromonas Populations in Wild and Farmed Perch, Perca fluviatilis L. Journal of Fish Diseases, 35, 607-613. http://dx.doi.org/10.1111/j.1365-2761.2012.01388.x

[10]   Figueiredo, H.C.P., Nobrega-Netto, L., Leal, C.A.G., Pereira, U.P. and Mian, G.F. (2012) Streptococcus iniae Outbreaks in Brazilian Nile Tilapia (Oreochromis niloticus L.) Farms. Brazilian Journal of Microbiology, 43, 576-580. http://dx.doi.org/10.1590/S1517-83822012000200019

[11]   Beaz-Hidalgo, R. and Figueras, M.J. (2012) Molecular Detection and Characterization of Furunculosis and Other Aeromonas Fish Infections. In: Carvalho, E., Ed., Health and Environment in Aquaculture, InTech Open Access Publisher, 97-132. http://dx.doi.org/10.5772/29901

[12]   Silva, B.C., Mourino, J.L.P., Vieira, F.N., Jatobá, A., Seiffert, W.Q. and Martins, M.L. (2012) Haemorrhagic Septicaemia in the Hybrid Surubim (Pseudoplatystoma corruscans × Pseudoplatystoma fasciatum) Caused by Aeromonas hydrophila. Aquaculture Research, 43, 908-916. http://dx.doi.org/10.1111/j.1365-2109.2011.02905.x

[13]   Janda, J.M. and Abbott, S.L. (2007) 16S rRNA Gene Sequencing for Bacterial Identification in the Diagnostic Laboratory: Pluses, Perils, and Pitfalls. Journal of Clinical Microbiology, 45, 2761-2764. http://dx.doi.org/10.1128/JCM.01228-07

[14]   Coton, E. and Coton, M. (2005) Multiplex PCR for Colony Direct Detection of Gram-Positive Histamine- and Tyramine-Producing Bacteria. Journal of Microbiological Methods, 63, 296-304. http://dx.doi.org/10.1016/j.mimet.2005.04.001

[15]   Ben-Dov, E., Shapiro, O.H., Siboni, N. and Kushmaro, A. (2006) Advantage of Using Inosine at the 3’ Termini of 16S rRNA Gene Universal Primers for the Study of Microbial Diversity. Applied and Environmental Microbiology, 72, 6902-6906. http://dx.doi.org/10.1128/AEM.00849-06

[16]   Claesson, M.J., Wang, Q., O’Sullivan, O., Greene-Diniz, R., Cole, J.R., Ross, R.P. and O’Toole, P.W. (2010) Comparison of Two Next-Generation Sequencing Technologies for Resolving Highly Complex Microbiota Composition Using Tandem Variable 16S rRNA Gene Regions. Nucleic Acids Research, 38, e200. http://dx.doi.org/10.1093/nar/gkq873

[17]   Lane, D.J., Pace, B., Olsen, G.J., Stahlt, D.A., Sogint, M.L. and Pace, N.R. (1985) Rapid Determination of 16S Ribosomal RNA Sequences for Phylogenetic Analyses. Proceedings of the National Academy of Sciences of the United States of America, 82, 6955-6959. http://dx.doi.org/10.1073/pnas.82.20.6955

[18]   Felske, A., Rheims, H., Wolterink, A., Stackebrandt, E. and Akkermans, A.D. (1997) Ribosome Analysis Reveals Prominent Activity of an Uncultured Member of the Class Actinobacteria in Grassland Soils. Microbiology, 143, 2983-2989. http://dx.doi.org/10.1099/00221287-143-9-2983

[19]   Sambrook, J. and Russel, D.W. (2001) Molecular Cloning. 3rd Edition, Cold Spring Harbor Laboratory Press, New York.

[20]   Sanger, F., Nicklen, S. and Coulson, A.R. (1977) DNA Sequencing with Chain-Terminating Inhibitors. Proceedings of the National Academy of Sciences of United States of America, 74, 5463-5467. http://dx.doi.org/10.1073/pnas.74.12.5463

[21]   Meireles, M.A.O.M. (2008) Uso de antimicrobianos e resistência bacteriana: Aspectos socioeconomics e comportamentais e seu impacto clínico e ecológico. Monograph (Microbiology Expert). Universidade Federal de Minas Gerais, Belo Horizonte.

[22]   Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. and Kumar, S. (2011) MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Molecular Biology and Evolution, 10, 2731-2739. http://dx.doi.org/10.1093/molbev/msr121

[23]   Kong, P., Richardson, P.A. and Hong, C.X. (2005) Direct Colony PCR-SSCP for Detection of Multiple Pythiaceous Oomycetes in Environmental Samples. Journal of Microbiological Methods, 61, 25-32. http://dx.doi.org/10.1016/j.mimet.2004.10.019

[24]   Belem-Costa, A. and Cyrino, J.E.P. (2006) Antibiotic Resistence of Aeromonas hydrophila Isolated from Piaractus mesopotamicus (Holmberg, 1887) and Oreochromis niloticus (Linnaeus, 1758). Scientia Agricola, 63, 281-284. http://dx.doi.org/10.1590/S0103-90162006000300011

[25]   Pereira, C.S., Amorim, S.D., Santos, A.F.M., Reis, C.M.F., Theophilo, G.N.D. and Rodrigues, D.P. (2008) Characterization of Aeromonas spp. Isolates from Newborns Hospitalized. Revista da Sociedade Brasileira de Medicina Tropical, 41, 179-182. http://dx.doi.org/10.1590/S0037-86822008000200009

[26]   Garcia, F., Pilarski, F., Onaka, E.M., Moraes, F.R. and Martins, M.L. (2007) Hematology of Piaractus mesopotamicus Fed Diets Supplemented with Vitamins C and E, Challenged by Aeromonas hydrophila. Aquaculture, 271, 39-46. http://dx.doi.org/10.1016/j.aquaculture.2007.06.021

[27]   Nishiki, I., Furukawa, M., Matui, S., Itami, T., Nakai, T. and Yoshida, T. (2011) Epidemiological Study on Lactococcus garvieae Isolates from Fish in Japan. Fisheries Science, 77, 367-373. http://dx.doi.org/10.1007/s12562-011-0332-0

[28]   Bekker, A., Hugo, C., Albertyn, J., Boucher, C.E. and Bragg, R.R. (2011) Pathogenic Gram-Positive Cocci in South African Rainbow Trout, Oncorhynchus mykiss (Walbaum). Journal of Fish Diseases, 34, 483-487. http://dx.doi.org/10.1111/j.1365-2761.2011.01259.x

[29]   Eyngor, M., Zlotkin, A., Ghittino, C., Prearo, M., Douet, D.G., Chilmonczyk, S. and Eldar, A. (2004) Clonality and Diversity of the Fish Pathogen Lactococcus garvieae in Mediterranean Countries. Applied and Environmental Microbiology, 70, 5132-5137. http://dx.doi.org/10.1128/AEM.70.9.5132-5137.2004

[30]   Avci, H., Aydogan, A., Tanrikul, T.T. and Birincioglu, S.S. (2010) Pathological and Microbiological Investigations in Rainbow Trout (Oncorhynchus mykiss Walbaum, 1792) Naturally Infected with Lactococcus garvieae. Kafkas üniversitesi Veteriner Fakültesi Dergisi, 16, S313-S318.

[31]   Chen, M.H., Hung, S.W., Shyu, C.L., Lin, C.C., Liu, P.C., Chang, C.H., Shia, W.Y., Cheng, C.F., Lin, S.L., Tu, C.Y., Lin, Y.H. and Wang, W.S. (2012) Lactococcus lactis Subsp. Lactis Infection in Bester Sturgeon, a Cultured Hybrid of Huso huso × Acipenser ruthenus, in Taiwan. Research in Veterinary Science, 93, 581-588. http://dx.doi.org/10.1016/j.rvsc.2011.10.007

[32]   Petersen, A. and Dalsgaard, A. (2003) Species Composition and Antimicrobial Resistance Genes of Enterococcus spp., Isolated from Integrated and Traditional Fish Farms in Thailand. Environmental Microbiology, 5, 395-402. http://dx.doi.org/10.1046/j.1462-2920.2003.00430.x

[33]   Netto, L.N., Leal, C.A.G. and Figueiredo, H.C.P. (2011) Streptococcus dysgalactiae as an Agent of Septicaemia in Nile Tilapia, Oreochromis niloticus (L.). Journal of Fish Diseases, 34, 251-254. http://dx.doi.org/10.1111/j.1365-2761.2010.01220.x

[34]   Evans, J.J., Wiedenmayer, A.A. and Klesius, P.H. (2002) A Transport System for Maintenance of Viability of Acinetobacter calcoaceticus, Streptococcus iniae, and Streptococcus agalactiae over Varying Time Periods. Bulletin of the European Association of Fish Pathologists, 22, 238-246.

[35]   Duremdez, R., Al-Marzouk, A. and Qasem, J.A. (2004) Isolation of Streptococcus agalactiae from Cultured Silver Pomfret, Pampus argenteus (Euphrasen), in Kuwait. Journal of Fish Diseases, 27, 307-310. http://dx.doi.org/10.1111/j.1365-2761.2004.00538.x

[36]   Eissa, N.M.E., Abou, E.E.N., Shaheen, A.A. and Abbass, A. (2010) Characterization of Pseudomonas Species Isolated from Tilapia “Oreochromis niloticus” in Qaroun and Wadi-El-Rayan Lakes, Egypt. Global Veterinaria, 5, 116-121.

[37]   Hussain, R.A. (2002) Studies on Some Bacterial Infections Affecting Certain Marine Fishes in the Arabian Gulf of Kingodom of Saudi Arabia. Ph.D. Dissertation., Faculty of Veterinary Medicine and Animal Resources, King Faisal University, Al-Ahsa.

[38]   Zorrilla, I., Chabrillón, M., Arijo, S., Díaz-Rosales, P., Martínez-Manzanares, E., Balebona, M.C. and Morinigo, M.A. (2003) Bacteria Recovered from Diseased Cultured Gilthead Sea Bream (Sparus aurata L.) in Southwestern Spain. Aquaculture, 218, 11-20. http://dx.doi.org/10.1016/S0044-8486(02)00309-5

[39]   Austin, B. and Austin, D.A. (2007) Bacterial Fish Pathogens. Diseases of Farmed and Wild Fish. Springer-Praxis Publishing, Ltd., Chichester.

 
 
Top