Back
 AJPS  Vol.6 No.9 , June 2015
On the Role of Chloroplasts in the Polymerization of Tannins in Tracheophyta: A Monograph
Abstract: Proanthocyanidins are formed in the chlorophyllous organs of Tracheophyta from a redifferentiation of chloroplasts involving the thylakoidal membrane and lumen. With the purpose to help researchers of concerned disciplines to identify such chloroplasts, we described herein the morphologies of functional and redifferentiating chloroplasts in various members of Tracheophyta. The most obvious sign of redifferentiation is a tremendous swelling of the chloroplast which turns obese. De novo genesis of osmiophilic materials is also characteristic, either as single dots attached to the inner face of the swollen thylakoidal membrane which will yield the tannosomes, or as pearl necklace-shaped structures protruding into the lumen; this last formation can be viewed as a giant tannosome forming finally stromal chlorotannic accretions. Whatever their mode of formation is, tannosomes are expulsed from the chloroplast as shuttles.
Cite this paper: Brillouet, J. (2015) On the Role of Chloroplasts in the Polymerization of Tannins in Tracheophyta: A Monograph. American Journal of Plant Sciences, 6, 1401-1409. doi: 10.4236/ajps.2015.69140.
References

[1]   Brillouet, J.-M., Romieu, C., Schoefs, B., Solymosi, K., Cheynier, V., Fulcrand, H., Verdeil, J.-L. and Conejero, G. (2013) The Tannosome Is an Organelle Forming Condensed Tannins in the Chlorophyllous Organs of Tracheophyta. Annals of Botany, 112, 1003-1014.
http://dx.doi.org/10.1093/aob/mct168

[2]   Brillouet, J.-M., Romieu, C., Lartaud, M., Jublanc, E., Torregrosa, L. and Cazevieille, C. (2014) Formation of Vacuolar Tannin Deposits in the Chlorophyllous Organs of Tracheophyta: from Shuttles to Accretions. Protoplasma, 251, 1387-1393.
http://dx.doi.org/10.1007/s00709-014-0640-1

[3]   Brillouet, J.-M. (2014) Plasticity of the Tannosome Ontogenesis in the Tracheophyta. Journal of Plant Sciences, 2, 317-323.

[4]   Sironval, C., Kirchman, R, Bronchart, R. and Michel, J.M. (1968) Sur le Freinage de l’Accumulation des Chlorophylles dans les Feuilles Primordiales de Phaseolus vulgaris L. var. Commodore à la Suite d’une Irradiation Photorestauration en Lumière Continue. Photosynthetica, 2, 57-67.

[5]   Sato, S., Adachi, A., Sasaki, Y. and Ghazizadeh, M. (2008) Oolong Tea Extract as a Substitute for Uranyl Acetate in Staining of Ultrathin Sections. Journal of Microscopy, 229, 17-20.
http://dx.doi.org/10.1111/j.1365-2818.2007.01881.x

[6]   Gomez, C., Conéjéro, G., Torregrosa, L., Cheynier, V., Terrier, N. and Ageorges, A. (2011) In Vivo Grapevine Anthocyanin Transport Involves Vesicle Mediated Trafficking and the Contribution of anthoMATE Transporters and GST. The Plant Journal, 67, 960-970.
http://dx.doi.org/10.1111/j.1365-313X.2011.04648.x

[7]   Staehelin, L.A. (2003) Chloroplast Structure: From Chlorophyll Granules to Supra-Molecular Architecture of Thylakoid Membranes. Photosynthesis Research, 76, 185-196.
http://dx.doi.org/10.1023/A:1024994525586

[8]   Rosso, S.W. (1968) The Ultrastructure of Chromoplast Development in Red Tomatoes. Journal of Ultrastructural Research, 25, 307-322.
http://dx.doi.org/10.1016/S0022-5320(68)80076-0

[9]   Juhász, G.D., Dános, B. and Rakován, N. (1970) Licht-und Elektronmikroskopische Untersuchung Gerbstoffhaltiger Zellen in den Reproduktiven Organen der Cornus-Arten. Annales Universitatis Scientiarum Budapestinensis Derolando Eotvoa Nominatae/Sectio Biologica, 12, 158-161.

[10]   Wardrop, A.B. and Cronshaw, J. (1962) Formation of Phenolic Substances in the Ray Parenchyma of Angiosperms. Nature, 193, 90-92.
http://dx.doi.org/10.1038/193090b0

[11]   Austin II, J.R., Frost, E., Vidi, P., Kessler, F. and Staehelin, L.A. (2006) Plastoglobules Are Lipoprotein Subcompartments of the Chloroplast That Are Permanently Coupled to Thylakoid Membranes and Contain Biosynthetic Enzymes. Plant Cell, 18, 1693-1703.
http://dx.doi.org/10.1105/tpc.105.039859

[12]   Kostina, E., Wulff, A. and Julkunen-Tiitto, R. (2001) Growth, Structure, Stomatal Responses and Secondary Metabolites of Birch Seedlings (Betula pendula) under Elevated UV-B Radiation in the Field. Trees, 15, 483-491.
http://dx.doi.org/10.1007/s00468-001-0129-3

[13]   Berli, F., D’Angelo, J., Cavagnaro, B., Bottini, R., Wuilloud, R. and Silva, M.F. (2008) Phenolic Composition in Grape (Vitis vinifera L. cv. Malbec) Ripened with Different Solar UV-B Radiation Levels by Capillary Zone Electrophoresis. Journal of Agricultural and Food Chemistry, 56, 2892-2898.
http://dx.doi.org/10.1021/jf073421+

[14]   Brillouet, J.-M., Verdeil, J.-L., Odoux, E., Lartaud, M., Grisoni, M. and Conéjéro, G. (2014) Phenol Homeostasis Is Ensured in Vanilla Fruit by Storage under Solid Form in a New Chloroplast-Derived Organelle, the Phenyloplast. Journal of Experimental Botany, 65, 2427-2435.
http://dx.doi.org/10.1093/jxb/eru126

[15]   Gifford, E.M. and Stewart, K.D. (1968) Inclusions of the Proplastids and Vacuoles in the Shoot Apices of Bryophyllum and Kalanchoë. American Journal of Botany, 55, 269-279.
http://dx.doi.org/10.2307/2440411

 
 
Top