[1] Weyl, H. (1918) Sitzungsberichte Der Preussischen Akademie Der Wissenschaften. Academy Wiss, Berlin, 465.
[2] Lyra, G. (1951) über-eine Modifikation der Riemannschen Geometrie. Mathematische Zeitschrift, 54, 52-64.
http://dx.doi.org/10.1007/BF01175135
[3] Pradhan, A. and Kumar, S.S. (2009) Plane Symmetric Inhomogeneous Perfect Fluid Universe with Electromagnetic Field in Lyra Geometry. Astrophysics and Space Science, 321, 137-146.
http://dx.doi.org/10.1007/s10509-009-0015-9
[4] Pradhan, A. and Mathur, P. (2009) Inhomogeneous Perfect Fluid Universe with Electromagnetic Field in Lyra Geometry. Fizika B, 18, 243-264. (gr-qc/0806.4815)
[5] Pradhan, A. and Yadav, P. (2009) Accelerated Lyra’s Cosmology Driven by Electromagnetic Field in Inhomogeneous Universe. International Journal of Mathematics and Mathematical Sciences (IJMMS), 2009, Article ID: 471938, 20 p.
http://dx.doi.org/10.1155/2009/471938
[6] Pradhan, A. (2009) Cylindrically Symmetric Viscous Fluid Universe in Lyra Geometry. Journal of Mathematical Physics, 50, 022501-022513.
http://dx.doi.org/10.1063/1.3075571
[7] Pradhan, A., Amirhashchi, H. and Zainuddin, H. (2011) A New Class of Inhomogeneous Cosmological Models with Electromagnetic Field in Normal Gauge for Lyra’s Manifold. International Journal of Theoretical Physics, 50, 56-69.
http://dx.doi.org/10.1007/s10773-010-0493-0
[8] Pradhan, A. and Singh, A.K. (2011) Anisotropic Bianchi Type-I String Cosmological Models in Normal Gauge for Lyra’s Manifold with Constant Deceleration Parameter. International Journal of Theoretical Physics, 50, 916-933.
http://dx.doi.org/10.1007/s10773-010-0636-3
[9] Yadav, A.K. (2010) Lyra’s Cosmology of Inhomogeneous Universe with Electromagnetic Field. Fizika B, 19, 53-80.
[10] Agarwal, S., Pandey, R and Pradhan, A. (2011) LRS Bianchi Type II Perfect Fluid Cosmological Models in Normal Gauge for Lyra’s Manifold. International Journal of Theoretical Physics, 50, 296-307.
http://dx.doi.org/10.1007/s10773-010-0523-y
[11] Singh, R.S. and Singh, A. (2012) A New Class of Magnetized Inhomogeneous Cosmological Models of Perfect Fluid Distribution with Variable Magnetic Permiability in Lyra Geometry. Electronic Journal of Theoretical Physics, 9, 265-282.
[12] Bhamra, K.S. (1974) A Cosmological Model of Class One in Lyra’s Manifold. Australian Journal of Physics, 27, 541-547.
http://dx.doi.org/10.1071/PH740541
[13] Kalyanshetti, S.B. and Waghmode, B.B. (1982) A Static Cosmological Model in Einstein-Cartan Theory. General Relativity and Gravitation, 14, 823-830.
[14] Soleng, H.H. (1987) Cosmologies Based on Lyra’s Geometry. General Relativity and Gravitation, 19, 1213-1216.
[15] Sen, D.K. and Vanstone, J.R. (1972) On Weyl and Lyra Manifolds. Journal of Mathematical Physics, 13, 990-994.
http://dx.doi.org/10.1063/1.1666099
[16] Karade, T.M. and Borikar, S.M. (1978) Thermodynamic Equilibrium of a Gravitating Sphere in Lyra’s Geometry. General Relativity and Gravitation, 9, 431-436.
[17] Reddy, D.R.K. and Innaiah, P. (1986) A Plane Symmetric Cosmological Model in Lyra Manifold. Astrophysics and Space Science, 123, 49-52.
http://dx.doi.org/10.1007/BF00649122
[18] Reddy, D.R.K. and Venkateswarlu, R. (1987) Birkhoff-Type Theorem in the Scale Covariant Theory of Gravitation. Astrophysics and Space Science, 136, 191-194.
[19] Asgar, A. and Ansary, M. (2014) Accelerating Bianchi Type-VI0 Bulk Viscous Cosmological Models in Lyra Geometry. Journal of Theoretical and Applied Physics, 8, 219-224.
http://dx.doi.org/10.1007/s40094-014-0151-7
[20] Kumari, P., Singh, M.K. and Ram, S. (2013) Anisotropic Bianchi Type-III Bulk Viscous Fluid Universe in Lyra Geometry. Advances in Mathematical Physics, 2013, Article ID: 416294.
http://dx.doi.org/10.1155/2013/416294
[21] Asgar, A. and Ansary, M. (2014) Bianchi Type-V Universe with Anisotropic Dark Energy in Lyra’s Geometry. The African Review of Physics, 9, 145-151.
[22] Zia, R. and Singh, R.P. (2012) Bulk Viscous Inhomogeneous Cosmological Models with Electromagnetic Field in Lyra Geometry. Romanian Journal of Physics, 57, 761-778.
[23] Asgar, A. and Ansary, M. (2014) Exact Solutions of Axially Symmetric Bianchi Type-I Cosmological Model in Lyra Geometry. IOSR Journal of Applied Physics (IOSR-JAP), 5, 1-5.
www.iosrjournals.org
[24] Panigrahi, U.K. and Nayak, B. (2014) Five Dimensional Stiff Fluids with Variable Displacement Vector in Lyra Manifold. International Journal of Mathematical Archive, 5, 123-128.
www.ijma.info
[25] Halford, W.D. (1970) Cosmological Theory Based on Lyra’s Geometry. Australian Journal of Physics, 23, 863-869.
http://dx.doi.org/10.1071/PH700863
[26] Halford, W.D. (1972) Scalar-Tensor Theory of Gravitation in a Lyra Manifold. Journal of Mathematical Physics, 13, 1699-1703.
http://dx.doi.org/10.1063/1.1665894