Comparison of Fixed Point Methods and Krylov Subspace Methods Solving Convection-Diffusion Equations
Abstract: The paper first introduces two-dimensional convection-diffusion equation with boundary value condition, later uses the finite difference method to discretize the equation and analyzes positive definite, diagonally dominant and symmetric properties of the discretization matrix. Finally, the paper uses fixed point methods and Krylov subspace methods to solve the linear system and compare the convergence speed of these two methods.
Cite this paper: Wang, X. (2015) Comparison of Fixed Point Methods and Krylov Subspace Methods Solving Convection-Diffusion Equations. American Journal of Computational Mathematics, 5, 113-126. doi: 10.4236/ajcm.2015.52010.
References

   Saad, Y. (2003) Iterative Methods for Sparse Linear Systems. Siam, Bangkok.
http://dx.doi.org/10.1137/1.9780898718003

   Varga, R.S. (2009) Matrix Iterative Analysis. Volume 27, Springer Science & Business Media, Heidelberger.

   Young, D.M. (2014) Iterative Solution of Large Linear Systems. Elsevier, Amsterdam.

   Lanczos, C. (1952) Solution of Systems of Linear Equations by Minimized Iterations. Journal of Research of the National Bureau of Standards, 49, 33-53.
http://dx.doi.org/10.6028/jres.049.006

   Hestenes, M.R. and Stiefel, E. (1952) Methods of Conjugate Gradients for Solving Linear Systems.

   Walker, H.F. (1988) Implementation of the GMRES Method Using Householder Transformations. SIAM Journal on Scientific and Statistical Computing, 9, 152-163.
http://dx.doi.org/10.1137/0909010

   Sonneveld, P. (1989) CGS, a Fast Lanczos-Type Solver for Nonsymmetric Linear Systems. SIAM Journal on Scientific and Statistical Computing, 10, 36-52.
http://dx.doi.org/10.1137/0910004

   Freund, R.W. and Nachtigal, N.M. (1991) QMR: A Quasi-Minimal Residual Method for Non-Hermitian Linear Systems. Numerische Mathematik, 60, 315-339.
http://dx.doi.org/10.1007/BF01385726

   van der Vorst, H.A. (1992) Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems. SIAM Journal on Scientific and Statistical Computing, 13, 631-644.
http://dx.doi.org/10.1137/0913035

   Brezinski, C., Zaglia, M.R. and Sadok, H. (1992) A Breakdown-Free Lanczos Type Algorithm for Solving Linear Systems. Numerische Mathematik, 63, 29-38.
http://dx.doi.org/10.1007/BF01385846

   Chan, T.F., Gallopoulos, E., Simoncini, V., Szeto, T. and Tong, C.H. (1994) A Quasi-Minimal Residual Variant of the Bi-CGSTAB Algorithm for Nonsymmetric Systems. SIAM Journal on Scientific Computing, 15, 338-347.
http://dx.doi.org/10.1137/0915023

   Gutknecht, M.H. (1992) A Completed Theory of the Unsymmetric Lanczos Process and Related Algorithms, Part I. SIAM Journal on Matrix Analysis and Applications, 13, 594-639.
http://dx.doi.org/10.1137/0613037

   Gutknecht, M.H. (1994) A Completed Theory of the Unsymmetric Lanczos Process and Related Algorithms. Part II. SIAM Journal on Matrix Analysis and Applications, 15, 15-58.
http://dx.doi.org/10.1137/S0895479890188803

   Eisenstat, S.C. (1981) Efficient Implementation of a Class of Preconditioned Conjugate Gradient Methods. SIAM Journal on Scientific and Statistical Computing, 2, 1-4.
http://dx.doi.org/10.1137/0902001

   Meijerink, J.V. and van der Vorst, H.A. (1977) An Iterative Solution Method for Linear Systems of Which the Coefficient Matrix Is a Symmetric M-Matrix. Mathematics of Computation, 31, 148-162.

   Ortega, J.M. (1988) Efficient Implementations of Certain Iterative Methods. SIAM Journal on Scientific and Statistical Computing, 9, 882-891.
http://dx.doi.org/10.1137/0909060

   Fowler, A.C. (1997) Mathematical Models in the Applied Sciences. Volume 17, Cambridge University Press, Cambridge.

Top