[1] Selkoe, D.J. (1991) The Molecular Pathology of Alzheimer’s Disease. Neuron, 6, 487-498.
http://dx.doi.org/10.1016/0896-6273(91)90052-2
[2] Iwatsubo, T., Odaka, A., Suzuki, N., Mizusawa, H., Nukina, N. and Ihara, Y. (1994) Visualization of Aβ 42(43) and Aβ40 in Senile Plaques with End-Specific Aβ Monoclonals: Evidence That an Initially Deposited Species Is Aβ 42(43). Neuron, 13, 45-53. http://dx.doi.org/10.1016/0896-6273(94)90458-8
[3] Ferri, C.P., Prince, M., Brayne, C., Brodaty, H., Fratiglioni, L., Ganguli, M., Hall, K., Hasegawa, K., Hendrie, H., Huang, Y.Q., Jorm, A., Mathers, C., Menezes, P.R., Rimmer, E. and Scazufca, M. (2005) Global Prevalence of Dementia: A Delphi Consensus Study. The Lancet, 366, 2112-2117.
http://dx.doi.org/10.1016/S0140-6736(05)67889-0
[4] Wanasuntronwong, A., Tantisira, M.H., Tantisira, B. and Watanabe, H. (2012) Anxiolytic Effects of Standardized Extract of Centella asiatica (ECa 233) after Chronic Immobilization Stress in Mice. Journal of Ethnopharmacology, 143, 579-585. http://dx.doi.org/10.1016/j.jep.2012.07.010
[5] Hossain, S., Hashimoto, M., Katakura, M. and Shido, O. (2013) Asiaticoside and Madecassoside, Two Major Glycosides of Centella asiatica Inhibit the in Vitro Amyloid Beta Peptide Aβ1-42 Fibrillation—Assessed by FCS, Capable of Detecting Single Molecular Movement and Interaction. Proceedings of the 11th International Conference on Alzheimer’s & Parkinson’s Diseases, Florence, 6-10 March 2013, 245.
[6] Mamun, A.A., Hashimoto, M., Katakura, M., Matsuzaki, K., Hossain, S., Arai, H. and Shido, O. (2014) Neuroprotective Effect of Madecassoside Evaluated Using Amyloid β1-42-Mediated in Vitro and in Vivo Alzheimer’s Disease Models. International Journal of Indigenous Medicinal Plants, 47, 1669-1682.
[7] Marvin (2011) Marvin Was Used for Drawing, Displaying and Characterizing Chemical Structures, Substructures and Reactions, Marvin 5.7.
[8] Thomsen, R. and Christensen, M.H. (2006) MolDock: A New Technique for High-Accuracy Molecular Docking. Journal of Medicinal Chemistry, 49, 3315-3321. http://dx.doi.org/10.1021/jm051197e
[9] Lührs, T., Ritter, C., Adrian, M., Riek-Loher, D., Bohrmann, B., Döbeli, H., Schubert, D. and Riek, R. (2005) 3D Structure of Alzheimer’s Amyloid-Beta (1-42) Fibrils. roceedings of the National Academy of Sciences of the United States of America, 102, 17342-17347. http://dx.doi.org/10.1073/pnas.0506723102
[10] Lyskov, S. and Gray, J.J. (2008) The RosettaDock Server for Local Protein-Protein Docking. Nucleic Acids Research, 36, W233-W238. http://dx.doi.org/10.1093/nar/gkn216
[11] Duhovny, D., Nussinov, R. and Wolfson, H.J. (2002) Efficient Unbound Docking of Rigid Molecules. In: Guigó, R. and Gusfield, D., Eds., Proceedings of the 2nd Workshop on Algorithms in Bioinformatics (WABI) Rome, Italy, Lecture Notes in Computer Science (LNCS) 2452, Springer Verlag, Berlin Heidelberg, 185-200.
[12] Hossain, S., Hashimoto, M., Katakura, M., Miwa, K., Shimada, T. and Shido, O. (2009) Mechanism of Docosahexaenoic Acid-Induced Inhibition of in Vitro Aβ1-42 Fibrillation and Aβ1-42-Induced Toxicity in SH-S5Y5 Cells. Journal of Neurochemistry, 111, 568-579.
http://dx.doi.org/10.1111/j.1471-4159.2009.06336.x
[13] Hashimoto, M., Hossain, S., Yamashita, S., Katakura, M., Tanabe, Y., Fujiwara, H., Gamoh, S., Miyazawa, T., Arai, H., Shimada, T. and Shido, O. (2008) Docosahexaenoic Acid Disrupts in Vitro Amyloid β1-40 Fibrillation and Concomitantly Inhibits Amyloid Levels in Cerebral Cortex of Alzheimer’s Disease Model Rats. Journal of Neurochemistry, 107, 1634-1646. http://dx.doi.org/10.1111/j.1471-4159.2008.05731.x
[14] Hashimoto, M., Hossain, S., Katakura, M., Mamun, A.A. and Shido, O. (2015) The Binding of Aβ1-42 to Lipid Rafts of RBC Is Enhanced by Dietary Docosahexaenoic Acid in Rats: Implicates to Alzheimer’s Disease. Biochimica et Biophysica Acta, 1848, 1402-1409. http://dx.doi.org/10.1016/j.bbamem.2015.03.008
[15] Hashimoto, M., Hossain, S., Hossain, S., Rahman, A., Shimada, T. and Shido, O. (2011) Docosahexaenoic Acid Withstands the Aβ25-35-Induced Neurotoxicity in SH-SY5Y Cells. The Journal of Nutritional Biochemistry, 22, 22-29. http://dx.doi.org/10.1016/j.jnutbio.2009.11.005
[16] Groenning, M. (2009) Binding Mode of Thioflavin T and Other Molecular Probes in the Context of Amyloid Fibrils- Current Status. Journal of Chemical Biology, 3, 1-18.
http://dx.doi.org/10.1007/s12154-009-0027-5
[17] Kim, Y., Lee, J.H., Ryu, J. and Kim, D.J. (2009) Multivalent & Multifunctional Ligands to Beta-Amyloid. Current Pharmaceutical Design, 15, 637-658. http://dx.doi.org/10.2174/138161209787315648
[18] Nilsson, K.P. (2009) Small Organic Probes as Amyloid Specific Ligands-Past and Recent Molecular Scaffolds. FEBS Letters, 583, 2593-2599. http://dx.doi.org/10.1016/j.febslet.2009.04.016
[19] Hossain, S., Hashimoto, M., Katakura, M., Mamun, A.A. and Shido, O. (2015) Medicinal Value of Asiaticoside for Alzheimer’s Disease as Assessed Using Single-Molecule-Detection Fluorescence Correlation Spectroscopy, Laser- Scanning Microscopy, Transmission Electron Microscopy, and in Silico Docking. BMC Complementary and Alternative Medicine, 15, in Press. http://dx.doi.org/10.1186/s12906-015-0620-9
[20] Sirk, T.W., Friedman, M. and Brown, E.F. (2011) Molecular Binding of Black Tea Theaflavins to Biological Membranes: Relationship to Bioactivities. Journal of Agricultural and Food Chemistry, 59, 3780-3787.
http://dx.doi.org/10.1021/jf2006547
[21] Stefani, M.S. (2013) Protein Folding and Aggregation into Amyloid: The Interference by Natural Phenolic Compounds. International Journal of Molecular Sciences, 14, 12411-12457.
http://dx.doi.org/10.3390/ijms140612411