[1] Bajwa, W., Haupt, J., Raz, G., Wright, S. and Nowak, R. (2007) Toeplitz-Structured Compressed Sensing Matrices. Proceedings of IEEE Workshop on Statistical Signal Processing, Madison, 26-29 August 2007, 294-298.
[2] Candes, E.J. and Tao, T. (2005) Decoding by Linear Programming. IEEE Transactions on Information Theory, 51, 4203-4215. http://dx.doi.org/10.1109/TIT.2005.858979
[3] Donoho, D.L. (2006) Compressed Sensing. IEEE Transactions on Information Theory, 52, 1289-1306.
http://dx.doi.org/10.1109/TIT.2006.871582
[4] Candes, E.J. and Tao, T. (2006) Near-Optimal Signal Recovery from Random Projections: Universal Encoding Strategies? IEEE Transactions on Information Theory, 52, 5406-5425.
http://dx.doi.org/10.1109/TIT.2006.885507
[5] Shannon, C.E. (1949) Communication in the Presence of Noise. Proceedings of the IRE, 37, 10-21.
http://dx.doi.org/10.1109/JRPROC.1949.232969
[6] Candès, E.J. and Romberg, J. (2007) Sparsity and Incoherence in Compressive Sampling. Inverse Problems, 23, 969. http://dx.doi.org/10.1088/0266-5611/23/3/008
[7] Davenport, M., Boufounos, P., Wakin, M. and Baraniuk, R. (2010) Signal Processing with Compressive Measurements. IEEE Journal of Selected Topics in Signal Processing, 4, 445-460.
http://dx.doi.org/10.1109/JSTSP.2009.2039178
[8] Taubman, D. and Marcellin, M. (2001) JPEG 2000: Image Compression Fundamentals, Standards and Practice. Kluwer Academic Publishers, Norwell.
[9] Donoho, D.L. (1995) Denoising by Soft-Thresholding. IEEE Transactions on Information Theory, 41, 613-627.
[10] Mallat, S. (1999) A Wavelet Tour of Signal Processing. Academic Press, San Diego.
[11] Carron, I. “Nuit Blanche” Blog. http://nuit-blanche.blogspot.com/
[12] Needell, D. and Vershynin, R. (2009) Uniform Uncertainty Principle and Signal Recovery via Regularized Orthogonal Matching Pursuit. Foundations of Computational Mathematics, 9, 317-334.
http://dx.doi.org/10.1007/s10208-008-9031-3
[13] Baraniuk, R. (2007) Compressive Sensing. IEEE Signal Processing Magazine, 24, 118-121.
[14] Amini, A., Montazerhodjat, V. and Marvasti, F. (2012) Matrices with Small Coherence Using p-Ary Block Codes. IEEE Transactions on Signal Processing, 60, 172-181.
http://dx.doi.org/10.1109/TSP.2011.2169249
[15] Calderbank, R., Howard, S. and Jafarpour, S. (2010) Construction of a Large Class of Deterministic Sensing Matrices that Satisfy a Statistical Isometry Property. IEEE Journal of Selected Topics in Signal Processing, 4, 358-374. http://dx.doi.org/10.1109/JSTSP.2010.2043161
[16] Nguyen, T.L.N. and Shin, Y. (2013) Deterministic Sensing Matrices in Compressive Sensing: A Survey. The Scientific World Journal, 2013, Article ID: 192795. http://dx.doi.org/10.1155/2013/192795
[17] Candes, E.J., Tao, T. and Romberg, J. (2006) Robust Uncertainty Principles: Exact Signal Recon-struction from Highly Incomplete Frequency Information. IEEE Transactions on Information Theory, 52, 489-509. http://dx.doi.org/10.1109/TIT.2005.862083
[18] Strohmer, T. and Hermann, M. (2008) Compressed Sensing Radar. IEEE Proceedings of International Conference on Acoustic, Speech, and Signal Processing, Las Vegas, 30 March-4 April 2008, 1509-1512.
[19] Bobin, J., Starck, J.L. and Ottensamer, R. (2008) Compressed Sensing in Astronomy. IEEE Journal of Selected Topics in Signal Processing, 2, 718-726. http://dx.doi.org/10.1109/JSTSP.2008.2005337
[20] Tropp, J.A., Laska, J.N., Duarte, M.F., Romberg, J.K. and Baraniuk, R.G. (2010) Beyond Nyquist: Efficient Sampling of Sparse Band Limited Signals. IEEE Transactions on Information Theory, 56, 520-544. http://dx.doi.org/10.1109/TIT.2009.2034811
[21] Duarte, M., Davenport, M., Takhar, D., Laska, J., Sun, T., Kelly, K. and Baraniuk, R. (2008) Single-Pixel Imaging via Compressive Sampling. IEEE Signal Processing Magazine, 25, 83-91.
http://dx.doi.org/10.1109/MSP.2007.914730
[22] Wen, J., Chen, Z., Han, Y., Villasenor, J. and Yang, S. (2010) A Compressive Sensing Image Compression Algorithm Using Quantized DCT and Noiselet Information. Proceedings IEEE ICASSP 2010, 1294-1297.
[23] Akyildiz, I.F., Su, W., Sankarasubramaniam, Y. and Cayirci, E. (2002) Wireless Sensor Networks: A Survey. Computer Networks, 38, 393-422. http://dx.doi.org/10.1016/S1389-1286(01)00302-4
[24] Barr, K.C. and Asanovic, K. (2006) Energy-Aware Lossless Data Compression. ACM Transactions on Computer Systems, 24, 250-291. http://dx.doi.org/10.1145/1151690.1151692
[25] Heinzelman, W.R., Chandrakasan, A. and Balakrishnan, H. (2000) Energy-Efficient Communication Protocol for Wireless Microsensor Networks. Proceedings of the 33rd Annual Hawaii International Conference on System Sciences, Maui, 4-7 January 2000, 3005-3014.
http://dx.doi.org/10.1109/HICSS.2000.926982
[26] Razzaque, M.A., Bleakley, C. and Dobson, S. (2013) Compression in Wireless Sensor Networks: A Survey and Comparative Evaluation. ACM Transactions on Sensor Networks, 10, 5:1-5:44.
[27] Alippi, C., Anastasi, G., Di Francesco, M. and Roveri, M. (2009) Energy Management in Wireless Sensor Networks with Energy-Hungry Sensors. IEEE Instrumentation & Measurement Magazine, 12, 16-23.
http://dx.doi.org/10.1109/MIM.2009.4811133
[28] Razzaque, M.A. and Dobson, S. (2014) Energy-Efficient Sensing in Wireless Sensor Networks Using Compressed Sensing. Sensors, 14, 2822-2859. http://dx.doi.org/10.3390/s140202822
[29] Takhar, D., Bansal, V., Wakin, M., Duarte, M., Baron, D., Laska, J., Kelly, K.F. and Baraniuk, R.G. (2006) A Compressed Sensing Camera: New Theory and an Implementation Using Digital Micromirrors. Proceedings of Computational Imaging IV at SPIE Electronic Imaging, San Jose, January 2006, 1-10.
[30] Foucart, S. and Rauhut, H. (2013) A Mathematical Introduction to Compressive Sensing. Applied and Numerical Harmonic Analysis, Springer Science+Business Media, New York.
[31] Fornasier, M. (2010) Numerical Methods for Sparse Recovery. In: Theoretical Foundations and Numerical Methods for Sparse Recovery, Radon Series on Computational and Applied Mathematics, de Gruyter, Berlin, 1-110.
[32] Rauhut, H. (2010) Compressive Sensing and Structured Random Matrices. In: Theoretical Foundations and Numerical Methods for Sparse Recovery, Radon Series on Computational and Applied Mathematics, de Gruyter, Berlin, 1-94.
[33] Candès, E.J. (2006) Compressive Sampling. Proceedings of the International Congress of Mathematicians, Madrid, 22-30 August 2006, 1-20.
[34] Candès, E. and Wakin, M. (2008) An Introduction to Compressive Sampling. IEEE Signal Processing Magazine, 25, 21-30. http://dx.doi.org/10.1109/MSP.2007.914731
[35] Romberg, J. (2008) Imaging via Compressive Sampling. IEEE Signal Processing Magazine, 25, 14-20.
http://dx.doi.org/10.1109/MSP.2007.914729
[36] Fornasier, M. and Rauhut, H. (2011) Compressive Sensing. In: Scherzer, O., Ed., Handbook of Mathematical Methods in Imaging, Chapter in Part 2, Springer, Berlin, 1-49.
[37] Baraniuk, R., et al. Compressive Sensing Resources. http://www-dsp.rice.edu/cs
[38] Tao, T. “What’s New” Blog. http://terrytao.wordpress.com