[1] Weller, H.G., Tabor, G., Jasak, H. and Fureby, C. (1998) A Tensorial Approach to Computational Continuum Mechanics Using Object-Oriented Techniques. Computers in Physics, 12, 620-631.
http://dx.doi.org/10.1063/1.168744
[2] Lysenko, D.A., Ertesvag, I.S. and Rian, K.E. (2012) Modeling of Turbulent Separated Flows Using OpenFOAM. Computers & Fluids, 80, 408-422.
http://dx.doi.org/10.1016/j.compfluid.2012.01.015
[3] Nilsson, J. (2010) Implementation of Acoustical Analogies in OpenFOAM and CALFEM. Lund University. Master-Thesis.
[4] Stein, A. and Pelz, P.F. (2012) Moglichkeiten und Grenzen numerischer Stromungsakustik mit OpenFOAM, DAGA 2012.
[5] Wang, Q., Pelz, P.F. and Matyschok, B. (2010) Numerische Simulation von turbulenzbedingtem Schall mit OpenFOAM, TU Darmstadt.
[6] Kraposhin, M.V. and Strizhak, S.V. (2013) How to Implement Simple Acoustic Analogy in OpenFOAM. 8th International OpenFOAM Workshop 2013, Jeju, Korea.
[7] Lighthill, M.J. (1952) On Sound Generated Aerodynamically I. General Theory. Proceedings of the Royal Society A, 211, 564-587.
http://dx.doi.org/10.1098/rspa.1952.0060
[8] Koltzsch, P. (2008) Flow Acoustics. In: Mechel, F.P., Ed., Formulas of Acoustics, 2nd Edition, Springer-Verlag Berlin Heidelberg, 945-1016.
http://dx.doi.org/10.1007/978-3-540-76833-3_14
[9] Curle, N. (1955) The Influence of Solid Boundaries upon Aerodynamic Sound. Proceedings of the Royal Society A, 231, 505-514.
http://dx.doi.org/10.1098/rspa.1955.0191
[10] Ehrenfried, K. (2004) Stromungsakustik: Skript Zur Vorlesung, Mensch & Buch Verlag, Berliner Hochschulskripte.
[11] Ffowcs Williams, J.E. and Hawkings, D.L. (1969) Sound Generation by Turbulence and Surfaces in Arbitrary Motion. Philosophical Transactions of the Royal Society A, 264, 321-342.
http://dx.doi.org/10.1098/rsta.1969.0031
[12] Oshima, T. and Imano, M. (2008) A Full Finite-Volume Time-Domain Approach towards General-Purpose Code Development for Sound Propagation Prediction with Unstructured Mesh. Proceedings of Inter-Noise 2008, Shanghai, 26-29 October 2008, 15 p.
[13] Poinsot, T.J. and Lelef, S. (1992) Boundary Conditions for Direct Simulations of Compressible Viscous Flows. Journal of Computational Physics, 101, 104-129.
http://dx.doi.org/10.1016/0021-9991(92)90046-2
[14] Colonius, T., Lele, S.K. and Moin, P. (1993) Boundary Conditions for Direct Computation of Aerodynamic Sound Generation, AIAA Journal, 31, 1574-1582.
http://dx.doi.org/10.2514/3.11817
[15] Andreini, Bianchini, Facchin, Giusti, Bellini, Chiti, Grazzini (2011) Large Eddy Simulation for Train Aerodynamic Noise Predictions. Proceedings of the WCRR 2011, Lille, 22-26 May 2011.
[16] Jangi, M., Tilley, N. and Merci, B. (2009) Numerical Simulations of Some Possible Fire Scenarios in a Closed Car Park with RANS and LES. Proceedings of the IAFSS Advanced Research Workshop, Santander, 15-17 October 2009, 233-242.
[17] Boersma, B.J. (2004) Numerical Simulation of the Noise Generated by a Low Mach Number, Low Reynolds Number Jet. Fluid Dynamics Research, 35, 425-447.
http://dx.doi.org/10.1016/j.fluiddyn.2004.10.003
[18] Goldstein, M.E. (1976) Aeroacoustics. McGraw-Hill International Book Co., New York.
[19] Tam, C.K.W. and Webb, J.C. (1993) Dispersion-Relation-Preserving Finite Difference Schemes for Computational Acoustics. Journal of Computational Physics, 107, 262-281.
http://dx.doi.org/10.1006/jcph.1993.1142
[20] Schwarze, R. (2013) CFD-Modellierung-Grundlagen Und Anwendungen Bei Stromungsprozessen. Springer Vieweg, Berlin.
[21] Tóth, P., Fritzsch, A. and Lohász, M. (2008) Application of Computational Fluid Dynamics Softwares for 2D Acoustical Wave Propagation. Gépészet, 29-30.