OJS  Vol.5 No.4 , June 2015
Extended Diagonal Exponent Symmetry Model and Its Orthogonal Decomposition in Square Contingency Tables with Ordered Categories
ABSTRACT
For square contingency tables with ordered categories, this article proposes new models, which are the extension of Tomizawa’s [1] diagonal exponent symmetry model. Also it gives the decomposition of proposed model, and shows the orthogonality of the test statistics for decomposed models. Examples are given and the simulation studies based on the bivariate normal distribution are also given.

Cite this paper
Iki, K. , Shibuya, A. and Tomizawa, S. (2015) Extended Diagonal Exponent Symmetry Model and Its Orthogonal Decomposition in Square Contingency Tables with Ordered Categories. Open Journal of Statistics, 5, 262-272. doi: 10.4236/ojs.2015.54028.
References
[1]   Tomizawa, S. (1992) A Model of Symmetry with Exponents along Every Subdiagonal and Its Application to Data on Unaided Vision of Pupils at Japanese Elementary Schools. Journal of Applied Statistics, 19, 509-512. http://dx.doi.org/10.1080/02664769200000046

[2]   Bowker, A.H. (1948) A Test for Symmetry in Contingency Tables. Journal of the American Statistical Association, 43, 572-574. http://dx.doi.org/10.1080/01621459.1948.10483284

[3]   Caussinus, H. (1965) Contribution à l’analyse statistique des tableaux de corrélation. Annales de la Faculté des Sciences de l’Université de Toulouse, 29, 77-182.

[4]   Stuart, A. (1955) A Test for Homogeneity of the Marginal Distributions in a Two-Way Classification. Biometrika, 42, 412-416. http://dx.doi.org/10.1093/biomet/42.3-4.412

[5]   Iki, K., Yamamoto, K. and Tomizawa, S. (2014) Quasi-Diagonal Exponent Symmetry Model for Square Contingency Tables with Ordered Categories. Statistics and Probability Letters, 92, 33-38.
http://dx.doi.org/10.1016/j.spl.2014.04.029

[6]   Bhapkar, V.P. and Darroch, J.N. (1990) Marginal Symmetry and Quasi Symmetry of General Order. Journal of Multivariate Analysis, 34, 173-184. http://dx.doi.org/10.1016/0047-259X(90)90034-F

[7]   Darroch, J.N. and Ratcliff, D. (1972) Generalized Iterative Scaling for Log-Linear Models. Annals of Mathematical Statistics, 43, 1470-1480. http://dx.doi.org/10.1214/aoms/1177692379

[8]   Darroch, J.N. and Silvey, S.D. (1963) On Testing More than One Hypothesis. Annals of Mathematical Statistics, 34, 555-567. http://dx.doi.org/10.1214/aoms/1177704168

[9]   Read, C.B. (1977) Partitioning Chi-Square in Contingency Table: A Teaching Approach. Communications in Statistics-Theory and Methods, 6, 553-562. http://dx.doi.org/10.1080/03610927708827513

[10]   Haber, M. (1985) Maximum Likelihood Methods for Linear and Log-Linear Models in Categorical Data. Computational Statistics and Data Analysis, 3, 1-10.
http://dx.doi.org/10.1016/0167-9473(85)90053-2

[11]   Bishop, Y.M.M., Fienberg, S.E. and Holland, P.W. (1975) Discrete Multivariate Analysis: Theory and Practice. The MIT Press, Cambridge.

[12]   Kullback, S. (1971) Marginal Homogeneity of Multidimensional Contingency Tables. Annals of Mathematical Statistics, 42, 594-606. http://dx.doi.org/10.1214/aoms/1177693409

[13]   Haberman, S.J. (1974) The Analysis of Frequency Data. The University of Chicago Press, Chicago.

[14]   Goodman, L.A. (1981) Association Models and the Bivariate Normal for Contingency Tables with Ordered Categories. Biometrika, 68, 347-355. http://dx.doi.org/10.1093/biomet/68.2.347

[15]   Yamamoto, K., Tahata, K. and Tomizawa, S. (2012) Some Symmetry Models for the Analysis of Collapsed Square Contingency Tables with Ordered Categories. Calcutta Statistical Association Bulletin, 64, 21-36.

[16]   Tomizawa, S. (1985) Analysis of Data in Square Contingency Tables with Ordered Categories Using the Conditional Symmetry Model and Its Decomposed Models. Environmental Health Perspectives, 63, 235-239. http://dx.doi.org/10.1289/ehp.8563235

[17]   Tahata, K. and Tomizawa, S. (2006) Decompositions for Extended Double Symmetry Models in Square Contingency Tables with Ordered Categories. Journal of the Japan Statistical Society, 36, 91-106.
http://dx.doi.org/10.14490/jjss.36.91

[18]   Agresti, A. (1983) A Simple Diagonals-Parameter Symmetry and Quasi-Symmetry Model. Statistics and Probability Letters, 1, 313-316. http://dx.doi.org/10.1016/0167-7152(83)90051-2

[19]   Tomizawa, S. (1991) An Extended Linear Diagonals-Parameter Symmetry Model for Square Contingency Tables with Ordered Categories. Metron, 49, 401-409.

 
 
Top